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THE EFFECT OF DIFFERENCES OF MATERIAL 
PROPERTIES ON FREE VIBRATION FREQUENCIES OF 
SIMPLY SUPPORTED THIN TRANSVERSALLY GRADED 
PLATE BANDS

Jaros aw J drysiak, Magda Ka mierczak-Sobi ska
ód  University of Technology

Abstract. A certain analysis of free vibration frequencies of a plate band with a smooth and 
a slow gradation of properties on the macro-level is made in this article. These plate bands 
have a tolerance-periodic structure on the micro-level. Hence, it can be shown that for such 
objects the effect of the microstructure size plays a crucial role in dynamic problems, cf. 
J drysiak [2009], Ka mierczak and J drysiak [2011]. In order to describe this effect the 
tolerance model of these bands is applied in this paper. Moreover to evaluate obtained results 
the asymptotic model is used. Fundamental free vibrations frequencies of the plate band, 
using the Ritz method are calculated using these models. Higher free vibrations frequencies 
are also obtained in the framework of the tolerance model. Moreover the effect of differences 
of Young’s modulus and of mass densities in the cell on the microlevel is shown.

Key words: thin transversally graded plate band, the effect of the microstructure size, 
free vibration frequencies, the effect of distribution functions and differences of material 
properties

INTRODUCTION

Free vibrations of thin plate bands with a span L are investigated in this paper. The 
material macrostructure of these plate bands is functionally graded along their span (on the 
macrolevel). However, the microstructure of them is tolerance-periodic on the microlevel, 
cf. J drysiak [2010], J drysiak and Michalak [2011], Ka mierczak and J drysiak [2010, 
2011, 2013]. Thus, these plate bands can be called thin functionally graded plate bands, 
cf. Suresh and Mortensen [1998], J drysiak [2010]. The material properties of the plates 
are assumed to be independent of x2-coordinate. A fragment of the plate band is shown in 
Fig. 1. The microstructure size is described by the length l of “the cell” and is assumed to 
be very small compared to span L of the plate.
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Fig. 1. A fragment of a thin transversally graded plate band
Rys. 1. Fragment cienkiego pasma p ytowego o poprzecznej gradacji w asno ci

Plates of this kind are described by partial differential equations with highly oscillating, 
tolerance-periodic, non-continuous coef  cients, which are not a good tool to analyse 
vibrations of these plates. In order to make such analysis, various averaged models 
are formulated, which are determined by partial differential equations with smooth, 
slowly-varying coef  cients. These plates can be treated as made of a functionally 
graded material [Suresh and Mortensen 1998], they are called transversally graded 
plates [J drysiak 2010].

Functionally graded structures are often described using approaches, which are 
applied to analyse macroscopically homogeneous media, e.g. periodic. Some of them 
are presented by Suresh and Mortensen [1998]. It should be mentioned these models, 
based on the asymptotic homogenization, cf. Jikov et al. [1994]. There are presented 
theoretical and numerical results of various problems of functionally graded structures 
in many papers. A collocation method with higher-order plate theories is used to analyse 
vibrations of FG-type plates by Roque et al. [2007]. A GDQ solution for free vibrations of 
shells is shown by Tornabene et al. [2011]. Higher order deformation theories are applied 
to investigate static response for functionally graded plates and shells by Oktem et al. 
[2012]. Shell-like structures with functionally graded material properties are investigated 
using a new low-order shell element by Kugler et al. [2013]. Free vibrations of functionally 
graded thick plates with shear and normal deformations effects are analysed by Jha et 
al. [2013]. An extended list of papers, where some theoretical and numerical results of 
thermomechanical problems of functionally graded structures can be found in J drysiak 
[2010] and Wo niak et al. (ed.) [2008, 2010]. Unfotunately, the governing equations of 
these models neglect usually the effect of the microstructure size.

In order to take into account this effect also in governing equations the tolerance 
modelling can be used [Wo niak et al. (ed.) 2008, 2010]. This method is applied to 
investigate various thermomechanical problems of periodic structures. Applications of 
the method can be found in a series of papers. Here, it can be mentioned those related to 
problems of periodic plates or shells, e.g. Michalak [2002], Nagórko and Wo niak [2002], 
J drysiak [2003, 2009], J drysiak and Pa  [2005], Baron [2006], Tomczyk [2007, 2013], 
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Domagalski and J drysiak [2012].  The tolerance modelling method is also adopted for 
similar thermomechanical problems of functionally graded structures, e.g. J drysiak 
[2010], Wo niak et al. (ed.) [2010]. Some applications to dynamic and stability problems 
for thin transversally graded plates are shown by: Ka mierczak and J drysiak [2010, 
2011, 2013], J drysiak and Michalak [2011], J drysiak [2013]; for functionally graded 
skeletonal shells by Michalak [2012]; for thin longitudinally graded plates by: Wirowski 
[2012], Michalak and Wirowski [2012]. The extended list of papers can be found in the 
books edited by Wo niak et al. (ed.) [2008, 2010].

The main aim of this paper is to apply the tolerance and the asymptotic models of 
vibrations for thin transversally graded plate bands to calculate free vibration frequencies 
of a simply supported plate band using the Ritz method. The second aim is to analyse the 
effect of various distribution functions of material properties on the frequencies. The third 
is to show the effect of differences between material properties [Young’s modulus and 
mass densities] in the cell on the frequencies. These effects are investigated for simply 
supported thin transversally graded plate bands.

FORMULATION OF THE PROBLEM

Our considerations are treated as independent of x2-coordinate. Denote x = x1, z = x3,  
[0, ] [ / 2, / 2]x L z d d∈ ∈ − , with d as a constant plate thickness. Hence, the plate band 

is described in the interval (0, )LΛ = , with “the basic cell”   –l / 2, l / 2] in the interval 
Λ , where l is the length of the basic cell, satisfying conditions: d << l << L. Let a cell 
with a centre at x∈Λ be denoted by ( ) ( / 2, / 2)x x l x lΔ ≡ − + . It is assumed that the plate 
band is made of two elastic isotropic materials, perfectly bonded across interfaces. These 
materials are characterised by Young’s moduli E , E  Poisson’s ratios v , v  and mass 
densities , . Let us assume that ( ), ( ), ,E x x xρ ∈Λ  are tolerance-periodic, highly-
oscillating functions in x, but Poisson’s ratio v  v = v is constant. Assuming E   E  and/or 

   the plate material structure can be treated as transversally functionally graded in 
the x-axis direction. Let  denote a derivative of x and w(x, t) 0 1( , ( , )x t t t∈Λ ∈ ) be a plate 
band de  ection.

Plate band properties are described by tolerance-periodic functions in x – the mass 
density per unit area of the midplane , the rotational inertia ϑ and the bending stiffness B:

3 3

212 12(1 )
( ) ( ), ( ) ( ), ( ) ( )d dx d x x x B x E x

ν
μ ρ ϑ ρ

−
≡ ≡ ≡   (1)

respectively. Free vibrations of thin transversally graded plate bands, under the assumptions 
of the Kirchhoff-type plate theory, are described by the partial differential equation of the 
fourth order for de  ection w(x, t):

[ ( ) ( , )] ( ) ( , ) ( ) 0B x w x t x w x t wμ ϑ∂∂ ∂∂ + − ∂ ∂ =   (2)

with highly-oscillating, non-continuous, tolerance-periodic functional in x coef  cients.
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FOUNDATIONS OF THE MODELLING

Following the book edited by Wo niak et al. (ed.) [2010] some of basic concepts 
of the tolerance modelling, which are also reformulated for tolerance-periodic plates 
by J drysiak [2010], are applied: the tolerance-periodic function 2 ( , )f TPδ∈ Λ Δ , the 
slowly-varying function 2 ( , )SVδ∈ Λ ΔF , the highly-oscillating function ( , )HOα

δφ ∈ Λ Δ ,
the  uctuation shape function 2 ( , )FSδ Λ Δ , with  as a tolerance parameter, 2 as a supper 
indice determined a kind of that function, cf. also Ka mierczak and J drysiak [2010].

The known averaging operator for an integrable function f is de  ned by:

1
( )

( ) ( ) ,l x
f x f y dy x ΔΔ

< > = ∈Λ   (3)

where a cell at x Δ∈Λ   is denoted by ( ) ,x xΔ ≡ + Δ   { : ( ) }x xΔΛ = ∈Λ Δ ⊂ Λ . If f is a 
tolerance-periodic function in x its averaged value calculated by (3) is a slowly-varying 
function in x.

Following the books by Wo niak et al. (ed.) [2010] and J drysiak [2010] and applying 
the basic concepts, the two fundamental modelling assumptions can be formulated.

The  rst assumption is the micro-macro decomposition of the plate band de  ection w:

( , ) ( , ) ( ) ( , ), 1, , ,A Aw x t W x t h x V x t A N x= + = ∈Λ   (4)

with 2( , ), ( , ) ( , )AW t V t SVδ⋅ ⋅ ∈ Λ Δ   (for every t) as basic kinematic unknowns 
(W( , t) is called the macrode  ection; VA( , t) are called the  uctuation amplitudes), and 

2( ) ( , )Ah FSδ⋅ ∈ Λ Δ  being the known  uctuation shape functions.
The second modelling assumption is the tolerance averaging approximation, in which 

it is assumed that terms O( ) are negligibly small in the course of modelling.

THE TOLERANCE MODELLING PROCEDURE

Following the monograph Wo niak et al. (ed.) [2010] the modelling procedure can be 
outlined in the form.

The formulation of the action functional is the  rst step: 

1

0

( ( ))
t

t
w

Λ

⋅ = ( , ( , ), ( , ), ( , ))y w y t w y t w y t dtdy∂∂ ∂   (5)

where lagrangean  is given by:

1
2 ( )ww w w B w wμ ϑ= + ∂ ∂ − ∂∂ ∂∂   (6)

Using the principle stationary action, after some manipulations, the known equation 
(2) of free vibrations for thin transversally graded plate bands is derived.
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In the next step of the tolerance modelling micro-macro decomposition (4) is 
substituted to (6). In the third step, applying averaging operator (3) the tolerance averaged 
form < h> of lagrangean (6) is obtained:

< h> 1
2 {( 2 )

}

B B

A B A B A B A B A B A B

B W B h V W W W

WW B h h V V h h V V h h V V

ϑ
μ ϑ μ

= − < > ∂∂ + < ∂∂ > ∂∂ + < > ∂ ∂ −

− < > + < ∂∂ ∂∂ > + < ∂ ∂ > − < >

 

                                                                                                                                        (7)

The principle stationary action applied to averaged functional  h  with lagrangean 
(7) leads to the system of governing equations with slowly-varying functional in x 
coef  cients.

MODEL EQUATIONS

Tolerance model equations

From the principle stationary action applied to averaged functional  with lagrangean 
(7), after some manipulations, the following system of equations for W( ,t) and VA( ,t) is 
derived:

( ( ) ( ) ) ( ) ( ) 0
( ) ( ) ( ( ) ( )) 0

B B

A A B B A B A B B

B x W B h x V x W x W
B h x W B h h x V h h x h h x Vα α

μ ϑ
μ ϑ

∂∂ < > ∂∂ + < ∂∂ > + < > − < > ∂∂ =
< ∂∂ > ∂∂ + < ∂∂ ∂∂ > + < > + < ∂ ∂ > =

                                                                                                                                         (8)

The underlined terms in these equations depend on the microstructure parameter l. 
Coef  cients of equations (8) are slowly-varying functions in x. These quations constitute 
the tolerance model of thin transversally graded plate bands, which allows to take into 
account the effect of the microstructure size on free vibrations of these plates. It can be 
observed that boundary conditions for these plate bands (in = (0,L)) are formulated 
only for macrode  ection W (on edges x = 0, L), but not for  uctuation amplitudes VA, 
A = 1, …, N.

Asymptotic model equations

Neglecting terms with l in equations (8)2 the algebraic equations for  uctuation 
amplitudes VA are obtained:

1( )A A B BV B h h B h W−= − < ∂∂ ∂∂ > < ∂∂ > ∂∂    (9)

Substituting formula (9) into (8)1 we arrive at the following equation for W( ,t):

1(( ( ) ( )( ( )) ( )) ) ( ) 0A A B BB x B h x B h h x B h x W x Wμ−∂∂ < > − < ∂∂ > < ∂∂ ∂∂ > < ∂∂ > ∂∂ + < > =   
                                                                                                                                       (10)
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The asymptotic model of thin transversally graded plate bands is represented by the 
above equation and micro-macro decomposition (4). This model can be obtained in the 
framework of the formal asymptotic modelling procedure, cf. the book by Wo niak et al. 
(ed.) [2010], Ka mierczak and J drysiak [2011, 2013]. The effect of the microstructure 
size on free vibrations of the transversally graded plates is neglected in equation (10). The 
asymptotic model describes only the macrobehaviour of these plate bands.

AN ANALYSIS OF FREE VIBRATIONS OF PLATE BANDS

Introduction

Let us consider free vibrations of a simply supported thin plate band with span L along 
the x-axis. The properties of the plate band are described by the following functions:

, , for ((1 ( )) / 2, (1 ( )) / 2)
( , ), ( , )

, , for [0, (1 ( )) / 2] [(1 ( )) / 2, ],
E z x l x l

z E z
E z x l x l l

ρ γ γ
ρ

ρ γ γ
′ ′ ∈ − +

⋅ ⋅ =
′′ ′′ ∈ − ∪ +

           (11)

where (x) is a distribution function of material properties, cf. Fig. 2.

Fig. 2.  “Basic cell” of the transversally graded plate band
Rys. 2.  „Komórka podstawowa” pasma p ytowego o poprzecznej gradacji w asno ci

Let us assume only one  uctuation shape function, i.e. A = N = 1, and denote h h1, 
V V1. Hence, micro-macro decomposition (4) of  eld w(x, t) can be written in the 
form:

( , ) ( , ) ( ) ( , ),w x t W x t h x V x t= +  

where 2( , ),  ( , ) ( , )W t t SVδ⋅ ⋅ ∈ Λ ΔV   for every  2
0 1( , ), ( ) ( , )t t t h FSδ∈ ⋅ ∈ Λ Δ .

The cell has a structure shown in Fig. 2. Thus, the periodic approximation of the 
 uctuation shape function h(x) takes the form:

2( , ) [cos(2 / ) ( )], ( ), ,h x z z l c x z x xλ π= + ∈Δ ∈Λ
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where parameter c(x) is a slowly-varying function in x and is determined by 0hμ< > = :

sin[ ( )]( )( ) ,
{ ( ) [1 ( )]}

xc c x
x x
πγ ρ ρ

π ρ γ ρ γ
′ ′′−= =

′ ′′+ −

with ( )xγ  as the periodic approximation of the distribution function of material properties 
(x). Parameter c(x) is treated as constant in calculations of derivatives ,h h∂ ∂∂ .

Denote:

4 2

, , ,

, , ,

B B B B h B B h h

l hh l h hμ μ μ μ ϑ ϑ ϑ ϑ− −

≡ < > ≡ < ∂∂ > = < ∂∂ ∂∂ >

= < > = < > = < > = < ∂ ∂ >
           (12)

Hence, tolerance model equations (8) take the form:

2 2

( ) 0
( ) 0

B W BV W W
B W BV l l V

μ ϑ
μ ϑ

∂∂ ∂∂ + + − ∂∂ =

∂∂ + + + =
                                                                      (13)

Moreover, using denotations (12), the plate band equation (10) has the form:

2[( / ) ] 0B B B W W Wμ ϑ∂∂ − ∂∂ + − ∂∂ =                                                                (14)

Equation (14) describes free vibrations of this plate band within the asymptotic model. 
All coef  cients of equations (13) and (14) are slowly-varying functions in x.

The Ritz method applied to the model equations

Since, analytical solutions of equations (13) or (14), with slowly-varying, functional 
coef  cients, are too dif  cult to solve, approximate formulas of free vibrations frequencies 
will be derived using the known Ritz method, cf. Ka mierczak and J drysiak [2010]. 
Hence, relations of the maximal strain energy  max and the maximal kinetic energy max 
are determined.

Solutions to equation (14) and equations (13) are assumed in the form satisfying 
boundary conditions for the simply supported plate band:

( , ) sin( ) cos( ), ( , ) sin( ) cos( )W VW x t A x t V x t A x tα ω α ω= =                               (15)

with a wave number  and a free vibrations frequency . Introducing denotations:

3

2

3

2

2
12(1 )

0

( ) 2
3(1 )

0

{ [1 ( )] ( ) }[sin( )] ,

{( )[2 ( ) sin(2 ( ))] 2 }[sin( )] ,

L
d

L
d

B E x x E x dx

B E E x x E x dx

ν

π
ν

γ γ α

πγ πγ π α

−

−

′′ ′= − +

′ ′′ ′′= − + +
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3

2

3

2
3(1 )

0

2

0

2
12

0

2
4

0

( ) sin( ( ))[sin( )] ,

{[1 ( )] ( ) }[sin( )] ,

{[1 ( )] ( ) }[cos( )] ,

{( )[2 ( ) sin(2 ( ))] 2 }[sin( )]

(

L
d

L

L
d

L
d

d

B E E x x dx

d x x x dx

x x x dx

x x x dx

π
ν

π

π

πγ α

μ γ ρ γ ρ α

ϑ γ ρ γ ρ α

μ ρ ρ πγ πγ πρ α

ρ

−
′ ′′= −

′′ ′= − +

′′ ′= − +

′ ′′ ′′= − + + +

′+

3

2

0

2 2

0

2
12

0

) ( )[ ( ) ( ) 2sin( ( ))][sin( )]

[ ( )] [sin( )] ,

{( )[2 ( ) sin(2 ( ))] 2 }[ ( )]

L

L

L
d

c x c x x x x dx

d c x x dx

x x x dxπ

ρ π γ πγ α

ρ α

ϑ ρ ρ πγ πγ πρ α

′′− − +

′′+

′ ′′ ′′= − − + Ψ

and using (15) for the tolerance model formulas of the maximal energies – strain max and 
kinetic max take the form:

2 2 2 21
max 2

2 2 2 2 2 21
max 2

[( 2 ) ]

[ ( ) ( )]

AM
W W V V

AM
W V

BA BA A BA

A A l l

α α

μ ϑα μ ϑ ω

= − +

= + + +
                                                           (17)

However for the asymptotic model they have the form:

2 2 2 21
max 2 [( 2 ) ],AM

W W V VBA BA A BAα α= − +            2 2 21
max 2 ( )AM

WA μ ϑα ω= +              (18)

Using the conditions of the Ritz method: 

( ) ( )0, 0
W VA A

δ δ
δ δ

= =                                                                  (19)

from relations (17) after some manipulations the following formulas are obtained:

4 2 2 2
2

, 2 2 2

4 2 2 2 2 2 2 2 2

2 2 2

( ) ( )( )
2( ) ( )

[ ( ) ( ) ] 4( ) ( )( )
2( ) ( )

l l B B
l l

B l l B lB l
l l

α μ ϑ μ α ϑω
μ α ϑ μ ϑ

α μ ϑ μ α ϑ α μ α ϑ μ ϑ
μ α ϑ μ ϑ

− +
+ + +≡
+ +

+ − + + + +
+ +

       (20)

(16)

max – max max – max
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for the lower – and the higher + free vibrations frequencies, respectively, in the 
framework of the tolerance model.

For the asymptotic model conditions (19) are applied to equations (18) and after 
manipulations we arrive at the following formula:

2
2 4

2 ,
( )
BB B

B
ω α

μ ϑα
−≡

+
                                                                                           (21)

of the lower free vibrations frequency .

Results

Let us introduce the distribution functions of material properties (x) in the following 
form:

2( ) sin ( / )x x Lγ π=                                                                                                (22)

2( ) cos ( / )x x Lγ π=                                                                                                (23)

2( ) ( / )x x Lγ =                                                                                                        (24)

( ) sin( / )x x Lγ π=                                                                                                   (25)

( ) 0.5xγ =                                                                                                               (26)

where formula (26) determines an example of a periodic plate band.
Moreover, let us denote by: 

2 2 212(1 ) 12(1 ) 12(1 )2 2 2 2 2 2 2 2 2, ( ) ( ) , ( ) ( )E E El l lν ρ ν ρ ν ρΩ ω Ω ω Ω ω′ ′ ′− − −
− − + +′ ′ ′≡ ≡ ≡     (27)

dimensionless frequency parameters for the free vibrations frequencies  and – , – 
determined by equations (21) and (20), respectively.

Results of calculations are shown in Fig. 3 and 4, where there are presented results 
obtained by the tolerance or the asymptotic models for plate bands with the simply 
supported edges. Fig. 3 shows plots of the lower frequency parameters versus both ratios 
E /E  – / , but Fig. 4 shows diagrams of the higher frequency parameters versus these 
both ratios. These calculations are made for the Poisson’s ratio = 0.3, the wave number 

 = /L, ratio l/L = 0.1 and ratio d/l = 0.1.
Some remarks can be formulated from results presented in Fig. 3 and 4:
1.  The effect of distribution functions of material properties (x) on the lower frequency 

parameters for various ratios E /E [0;1], / [0;1] can be observed in Fig. 3:
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Fig. 3.  Plots of dimensionless frequency parameters Ω  and –Ω of lower free vibration frequen-
cies versus ratios E /E  – / , for the simply supported plate band (1 –  by (22); 2 –   
by (23); 3 –  by (24); 4 –  by (25); 0 –  by (26); a grey plane is related to the frequency 
parameter for the homogeneous plate band, i.e. E’’/E’ = ''/ ' =1)

Rys. 3.  Wykresy bezwymiarowych parametrów cz sto ci Ω  i –Ω ni szych cz sto ci drga  swo-
bodnych, w zale no ci od ilorazów E /E  – / , dla przegubowo podpartego pasma 
p ytowego (1 –  wg (22); 2 –  wg (23); 3 –  wg (24); 4 –  wg (25); 0 –  wg (26); 
szara p aszczyzna stanowi wykres parametru cz sto ci jednorodnego pasma p ytowego, 
tj. E’’/E’= ''/ ' = 1)

Fig. 4. Plots of dimensionless frequency parameters Ω+  of higher free vibration frequencies ver-
sus ratios E /E  – / , for the simply supported plate band (1 –  by (22); 2 –  by (23); 
3 –  by (24); 4 –  by (25); 0 –  by (26))

Rys. 4.  Wykresy bezwymiarowych parametrów cz sto ci Ω+  wy szych cz sto ci drga  swobod-
nych, w zale no ci od ilorazów E /E  – / , dla przegubowo podpartego pasma p yto-
wego (1 –  wg (22); 2 –  wg (23); 3 –  wg (24); 4 –  wg (25); 0 –  wg (26))
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the highest values of these frequency parameters for the simply supported plate 
band, cf. Fig. 3, are obtained:

for (x) by (23) and for pairs of ratios (E /E , / ), such that E /E  > 
(E /E )0 > 0, / < ( / )0 ((E /E )0) > 0, where ( / )0 depends on (E /E )0),
for (x) by (25) and for pairs of ratios (E /E , / ), such that E /E < 
(E /E )0 > 0, / > ( / )0((E /E )0) > 0, where ( / )0 depends on 
(E /E )0;

the smallest values of these frequency parameters, cf. Fig. 3, are obtained:
for (x) by (25) and for pairs of ratios (E /E , / ), such that E /E > 
(E /E )1 > 0, / < ( / )1((E /E )1) > 0, where ( / )1 depends on (E /E )1),
for (x) by (24) and for pairs of ratios (E /E , / ), such that E /E < 
(E /E )2 > 0, / > ( / )2 ((E /E )2) > 0, where ( / )2 depends on (E /E )2),
moreover, for (x) by (26) (the periodic plate band) and for pairs of ratios 
(E /E , / ), such that (E /E )1 > E /E > (E /E )2 > 0, ( / )1((E /E )1) < 

/ < ( / )2((E /E )2) > 0, where ( / )1, ( / )2 depend on (E /E )1, 
(E /E )2), respectively;

2.  Fig. 3 shows also an interesting feature that for the used distribution functions of 
material properties (x) the lower frequency parameters are:

higher than the lower frequency parameter for the homogeneous plate band 
with ratios E /E = / = 1 (a grey plane in Fig. 3) for pairs of ratios (E /E , 

/ ), such that E /E > (E /E )1 > 0, / < ( / )1((E /E )1) > 0, (and ( / )1 
depends on (E /E )1);
smaller than the lower frequency parameter for the homogeneous plate band 
with ratios E /E = / =1 (a grey plane in Fig. 3) for pairs of ratios (E /E , 

/ ), such that E /E < (E /E )0 > 0, / > ( / )0((E /E )0) > 0, (and ( / )0 
depends on (E /E )0).

3.  The effect of distribution functions of material properties (x) on the higher frequency 
parameters for various ratios E /E [0;1], / [0;1] can be observed in Fig. 4:

the highest values of the higher frequency parameters for the simply supported 
plate band, cf. Fig. 4, are obtained:

for (x) by (24) and for pairs of ratios (E /E , / ), such that E /E > 
(E /E )0 > 0, / < ( / )0((E /E )0) > 0, where ( / )0 depends on (E /E )0),
for (x) by (25) and for pairs of ratios (E /E , / ), such that E /E < 
(E /E )1 > 0, / > ( / )1((E /E )1) > 0, where ( / )1 depends on 
(E /E )1,
moreover, for (x) by (26) (the periodic plate band) for certain pairs of 
ratios (E /E , / ), such that (E /E )2 > E /E > (E /E )0 > 0 and E /E > 
(E /E )1 > 0, / < ( / )2 ((E /E )2) > 0, where ( / )0, ( / )1, ( / )2 
depend on (E /E )0, (E /E )1, (E /E )2), respectively,
moreover, for (x) by (23) for pairs of ratios (E /E , / ), such that 
E /E > (E /E )2 > 0, / < ( / )2((E /E )2) > 0, where ( / )2 depends 
on (E /E )2);

–

–

–

–

–

–

–

–

–
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the smallest values of the higher frequency parameters, cf. Fig. 4, are obta-
ined:

for (x) by (25) and for pairs of ratios (E /E , / ), such that E /E > 
(E /E )3 > 0, / < ( / )3((E /E )3) > 0, where ( / )3 depends on (E /E )3),
for (x) by (23) and for pairs of ratios (E /E , / ), such that (E /E )3 > 
E /E > 0, / > ( / )3((E /E )3) > 0, where ( / )3 depends on (E /E )3).

REMARKS

The averaged tolerance model equations of the functionally graded plate bands are 
derived using the tolerance modelling to the known differential equation of Kirchhoff-
type plates. This method leads from the differential equation with non-continuous, 
tolerance-periodic coef  cients to the system of differential equations with slowly-varying 
coef  cients. The tolerance model equations involve terms describing the effect of the 
microstructure size on the overall behaviour of these plates. But the asymptotic model 
describes only their macrobehaviour.

In the example free vibration frequencies of the simply supported plate band have 
been analysed for various distribution functions of material properties (x) and different 
ratios of material properties E /E , / .

Analysing results of this example it can be observed that:
1.  Lower free vibrations frequencies can be analysed using both the presented models 

– the tolerance and the asymptotic.
2.  Lower and higher free vibrations frequencies decrease with the increasing of ratio 

/ , but they increase with the increasing of ratio E /E .
3.  Using various distribution functions of material properties (x) there can be made 

microstructured plates having lower fundamental free vibrations frequencies smaller or 
higher than these frequencies for the homogeneous plate made of the stronger material 
(i.e. the plate with ratios E /E = / = 1) for different pairs of ratios (E /E , / ).

Other problems of vibrations for the functionally graded plates under consideration 
and some evaluations of obtained results will be shown in forthcoming papers.
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WP YW RÓ NIC W ASNO CI MATERIA OWYCH NA CZ STO CI 
DRGA  W ASNYCH SWOBODNIE PODPARTYCH CIENKICH PASM 
P YTOWYCH O POPRZECZNEJ GRADACJI W ASNO CI

Streszczenie. W tej pracy pokazano pewn  analiz  cz sto ci drga  swobodnych pasma 
p ytowego o g adkiej i wolnej zmianie w asno ci na poziomie makro. Takie pasma p yto-
we maj  budow  tolerancyjnie-periodyczn  na poziomie mikro. Mo na wi c wykaza , e 
w zagadnieniach dynamicznych takich obiektów wielko  mikrostruktury ma du e zna-
czenie [J drysiak 2009, Ka mierczak i J drysiak 2011]. W celu opisania tego efektu zasto-
sowano model tolerancyjnych tego rodzaju pasm p ytowych. Ponadto otrzymane wyniki 
porównano z wynikami uzyskanymi modelem asymptotycznym. Podstawowe cz sto ci 
drga  swobodnych pasma p ytowego obliczono w obu modelach, korzystaj c z metody 
Ritza. Cze sto ci wy sze otrzymano tak e w modelu tolerancyjnym. Pokazano równie  
wp yw ró nic modu ów Younga i g sto ci masy w komórce na poziomie mikro.

S owa kluczowe: cienkie pasmo p ytowe o poprzecznej gradacji w asno ci, wp yw wiel-
ko ci mikrostruktury, cz sto ci drga  swobodnych, wp yw funkcji rozk adu w asno ci 
i ró nic materia owych
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