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INTRODUCTION

When designing an engineering structure, many fac-
tors must be taken into account, including safety 
considerations, without which it is impossible to carry 
out even the most ambitious plan. The engineer’s task 
is to gather various types of data to enable, among 
other things, verification whether the soil is suitable 
for the designed building and allows for the construc-
tion of solid foundations. Soil type and geotechnical 
parameters needed for designing are obtained in soil 
tests (Schneider, 1997; Orr, 2000; Bond & Harris, 
2008; Młynarek, 2008; Wierzbicki, 2010; Młynarek, 
Stefaniak & Wierzbicki, 2012; Tarnawski et al., 2020). 
Soil investigations are thus indispensable here. They 
can be subdivided into field and laboratory tests. 
Laboratory tests have a number of advantages, includ-
ing accuracy, a well-defined stress state or the ability 
to control drainage conditions (Gryczmański, 1995; 
Pisarczyk, 2014; Cichy, Lechowicz & Garbulewski, 

2017). In situ tests, which are the subject of this ar-
ticle, are used for testing soil parameters directly in 
the field. Based to them it is possible to determine the 
geotechnical parameters of soils in their natural state. 
These measurements, owing to modern investigation 
methods, are in the forefront of soil classification be-
cause of the large array of available nomogram charts, 
which can be used to determine characteristic soil pa-
rameters in a simple way for a given type of probing 
and then to interpret the results of this probing. The 
most common in situ soundings include the cone pen-
etration test (CPT) and the Marchetti’s dilatometer test 
(DMT) (Schmertmann, 1978; Marchetti, 1980; Lunne, 
Robertson & Powell, 1997; Fellenius & Eslami, 2000; 
Młynarek, Gogolik & Marchetti, 2006; Młynarek, 
Wierzbicki & Wołyński, 2007; Bałachowski & Kurek, 
2008; Tankiewicz & Bagińska, 2021). They are also 
often used to supplement borehole data. This paper 
does not describe the construction of dilatometer and 
cone penetration tests, as this information can be found 
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in the archives of the journal (Bajda, Skutnik, Lech  
& Rabarijoely, 2018; Rabarijoely, 2018). Analysis of 
the accuracy of the subsoil layer identification methods 
and their comparison with samples taken for labora-
tory tests was carried out. The research was conducted 
on the Warsaw University of Life Sciences (SGGW) 
Campus. The aim of this publication is to verify the 
accuracy of selected soil identification methods based 
on in situ tests with CPT and DMT analyses. It also 
supplies data on the application of Marr’s and Mar-
chetti’s nomogram charts in the interpretation of CPT 
and DMT test results, respectively, from the SGGW 
Campus. The article is also focused on the validation 
of methods for soil type determination and the applica-
tion of nomograms for soil type determination in the 
SGGW Campus subsoil.

IN SITU METHODS FOR SOIL TYPE 
DETERMINATION

Cone penetration and Marchetti’s dilatometer tests 
(CPT and DMT respectively), and later also piezocone 
penetration test (CPTu) were initially considered more 
reliable in the assessment of geotechnical conditions 
in the designed building structure. Currently, despite 
significant differences in test methodology, CPTu and 
seismic dilatometer Marchetti’s test (SDMT) sound-
ings are considered equivalent.

One of the simplest CPT nomograms was devel-
oped in 1981. The classification on Figure 1 presents 
the dependence of cone resistance (qc) on sleeve fric-
tion (fs). The classification nomogram is subdivided 
into seven areas, each representing a different soil 
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Fig. 1. The CPT test results from the SGGW Campus: a – the Marr’s nomogram (Begemann, 
1965); b – Robertson’s nomogram (Robertson, Campanella, Gillespie & Grieg, 1986)  
 

Fig. 1. 	 The CPT test results from the SGGW Campus: a – the Marr’s nomogram (Begemann, 1965); b – Robertson’s 
nomogram (Robertson, Campanella, Gillespie & Grieg, 1986) 
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Marchetti (1980), Cruz, Devincenzi and Viana da Fonseca (2006), Cruz (2009), and Cruz 
(2010), when presenting Marchetti’s dilatometer, an innovative research device, proposed a 
soil subdivision based on the material index (ID). This parameter is a close connection 
between the material index and grain-size distribution (Marchetti, 1980; Fig. 2). Marchetti 
observed that in the case of clays, the material index (ID) reaches similar values, whereas for 
sands these values diverge significantly. On this basis, the subsoil was divided into types 
depending on the value of the material index (ID) – Table 1. 
 

 
Fig. 2. Marchetti’s nomogram chart with DMT test results from the SGGW Campus 
 
Table 1. Soil classification depending on the value of the material index (ID) (Marchetti, 1980) 
along with an additional soil range presented in this paper  

Material index (ID)  
Clay (Cl) 

silty clay 
(siCl) 

clay 
(Cl) 

sandy clay 
(siCl/saCl) 

silty clay with 
sand 
(siCl) 

sandy and silty 
clay 

(sasiCl) 

sandy clay with 
silt 

(saCl) 
0.1–0.27 0.27–0.33 0.33–0.57 0.57–0.58 0.58–0.59 0.59–0.61 

Silt (Si) 

clayey silt 
(saclSi) 

clayey and sandy 
silt 

(sasiCl) 

clayey sand 
(saCl/clSa) 

silt 
(Si) 

sandy silt 
(clSi) 

slightly clayey 
sand 

(clSa) 
0.61–0.78 0.78–0.79 0.79–0.81 0.81–1.17 1.17–1.74 1.74–1.8 

Sand (Sa) 
silty sand 

(siSa) 
fine sand 

(FSa) 
medium sand 

(MSa) 
coarse sand 

(CSa) 
1.8–3.3 3.3–4.5 4.5–6.5 6.5–10 

Fig. 2. 	 Marchetti’s nomogram chart with DMT test results from the SGGW Campus
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type, and each straight line represents a boundary for 
the value of friction coefficient (Rf).

Marchetti (1980), Cruz, Devincenzi and Viana 
da Fonseca (2006), Cruz (2009), and Cruz (2010), 
when presenting Marchetti’s dilatometer, an innova-
tive research device, proposed a soil subdivision based 
on the material index (ID). This parameter is a close 
connection between the material index and grain-size 
distribution (Marchetti, 1980; Fig. 2). Marchetti ob-
served that in the case of clays, the material index (ID) 
reaches similar values, whereas for sands these values 
diverge significantly. On this basis, the subsoil was di-
vided into types depending on the value of the material 
index (ID) – Table 1.

MATERIAL AND METHODS

The SGGW Campus area is located on a post-glacial 
plateau. It is a flat area that developed in the Neogene, 
located in the Mazovian basin (Fig. 3). According to 
archival data, the basin bottom is composed of marls, 
siliceous limestones and gaizes. The thickness of Pa-
leogene and Neogene deposits exceeds 200 m. The 
upper part of the Neogene is represented by Pliocene 
sediments, which consist mainly of motley clays with 
lenses and layers of sand and silt with a thickness 
of about 105 m. The erosive activity of waters in the 
periglacial and later periods, as well as glacitectonic 
deformation resulted in a varied surface of Pliocene 
clays. Quaternary sediments with a thickness of 
26–49 m occur above the clay layers. These deposits 
were formed as a result of glacial, fluvioglacial and 
fluvial accumulation. At the base of the Quaternary 
occur ice-dammed clay-silt deposits with silt inter-
beds.

This paper presents the test results of mineral sub-
soils obtained from the SGGW Campus with the De-
partment of Geotechnical Engineering of the SGGW 
sites located in Warsaw, where a laboratory and field 
testing program was carried out. The geological char-
acteristics of grounds in the buildings designed in the 
frame of SGGW Campus development were recog-
nised by the interpretation of boring data (102 bore-
holes), CPT and DMT tests (69 and 41 profiles, 
respectively) and comprehensive laboratory inves-
tigations (Fig. 4a). Analysis of data collected in the 

ground investigation report (GIR) allowed to identify 
five geotechnical layers in the SGGW Campus test 
site (Fig. 4b–c), including a layer of brown glacial 
boulder clay referred to in this paper as Layer III 
(according to the geotechnical classification: sandy 
clay – saCl and sasiCl) from the Wartanian glaciation 
(gQpW), for which the liquidity index (IL) values 
varies from 0.0 to 0.11, and a layer of grey glacial 
boulder clay from the Odranian glaciation (gQpO), as 
well as sandy clay with boulders, referred to as Lay-
er IV, for which the liquidity index (IL) values varies 
from 0.0 to 0.12. Layers III and IV were indicated as 
layers with relevant geotechnical conditions for the 
foundation of the Campus buildings (Fig. ����������� 4b–c). The 
SGGW Campus in Ursynów was founded on a mo-
raine plateau (Katedra Geotechniki Szkoły Głównej 
Gospodarstwa Wiejskiego w Warszawie, 2000– 
–2005). �����������������������������������������        In order to create a 3D model of geotech-
nical layer distribution in the tested ground, Surfer 
v. 8.0 software was applied. Each geotechnical layer 
was drawn by the program separately and then all 
layers were joined together (Fig. 4d). The grain-size 
distribution curve obtained from the laboratory tests 
for mineral soils from the described sites is presented 
in Figure 5. The basic properties of the Miocene and 
Pliocene clays are presented in Table 2.
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Fig. 4. The SGGW Campus site: a – locations of CPT (▼) and DMT (■) test sites; b – typical 
geotechnical cross-section; wn – moisture content, ID – relative density, IL – liquidity index, 
m n.p.r. – meters above Vistula 0 level; c – 3D geotechnical model  
 

fig. 4.  The SGGW Campus site: a – locations of CPT (▼) and DMT (■) test sites; b – typical geotechnical cross-section; 
wn – moisture content, ID – relative density, IL – liquidity index, m n.p.r. – meters above Vistula 0 level; c – 3D 
geotechnical model 

Table 2.  Properties of the tested Warsaw clays

Site

Grain size by soil typea

[%]
Density unit 
weight (ρ)

[t·m–3]

Specific 
density (ρs)

[t·m–3]

Preconsolidation 
ratio (OCR)

[-]

Plasticity 
limit (wP)

[%]

Liquidity 
limit (wL)

[%]gravel sand silt clay

SGGW Campus 
(boulder clay) 2 61–70 18–26 10–13 2.0–2.2 2.72 2–5 11.67–13.08 21.9–26.5

SGGW Campus 
(Pliocene clay) 0 3–8 40–64 32–56 2.1–2.2 2.72 2–3 24.97–31.16 67.60–88.11

aAccording to EN ISO 14688-1 standard (International Organization for Standardization [ISO], 2018).
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RESULTS 

Soil soundings on the SGGW Campus
The CPT soundings on the SGGW Campus were 
performed for the future Building 34 (Fig. 6), under-
ground parking lot (Fig. 7), the SGGW Water Centre 
(Fig. 8) and SGGW Sport Stadium (Fig. 9). The re-
sults are presented as graphs of the measured qc, fs and 
Rf parameters.

Validation of methods for soil type determination 
– application of nomograms for the determination of 
soil type in the subsoil of the SGGW Campus.

Marr’s nomogram was chosen to determine the soil 
type from CPT tests in this paper (Eslami & Fellenius, 
2004). Polish standards do not contain detailed guide-
lines for the interpretation of CPT soil type determina-
tion, therefore selected criteria, most commonly used 
in international practice, were used for the identifica-
tion. In this study the guidelines of the field investiga-
tions standard PN-B-04452 (Polski Komitet Norma-
lizacyjny [PKN], 2002) were used. The results of soil 
probing from the SGGW Campus were plotted on the 
nomogram (Fig. 1). The nomogram enables to deter-
mine the soil type. The foundations of Building 34, 
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Fig. 7. Profiles of qc, fs and Rf of CPT sounding results for the underground parking lot in the 
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Fig. 7. 	 Profiles of qc, fs and Rf of CPT sounding results for the underground parking lot in the SGGW Campus

the underground parking lot and the SGGW Sport 
Stadium are characterised by similar soils, mostly 
clays and silts, whereas the foundation of the SGGW 
Water Centre is composed mainly of sands within the 
analysed depth interval. Marchetti’s nomogram charts 
were chosen for the DMT study. The results of sound-
ings from the SGGW Campus were plotted on this  

nomogram. It shows also that their subsoil is com-
posed mainly of silts and clays (Fig. 2).

Validation is the process of confirming in a docu-
mented way whether the results obtained by a certain 
method are reliable and consistent with the actual 
state. It involves checking the method validity. Vali-
dation may also refer to equipment, materials, opera-
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tions, or procedures. Marr’s nomogram was selected 
to determine the soil type from CPT and CPTU tests. 
Cone probe tests and boreholes were performed on the 
SGGW Campus to determine the foundation condi-
tions of the structures. The investigations were per-
formed under the future buildings, Building 34, the 
SGGW Sport Stadium, the SGGW Water Centre and 
underground parking lot. Samples for laboratory tests 

were taken from the boreholes. These tests determined 
the soil type at the sampling depths. The results of lab-
oratory tests are considered reference data for the field 
test results. The qc and fs parameters obtained from the 
CPT test were plotted on Marr’s nomogram (Fig. 1a) 
and then the layer types found in particular points were 
determined. The next step was a comparison of the re-
sults from the CPT survey with the nearest borehole 
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Fig. 9. Profiles of qc, fs and Rf of CPT sounding results for the SGGW Sport Stadium 
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were chosen for the DMT study. The results of soundings from the SGGW Campus were 
plotted on this nomogram. It shows also that their subsoil is composed mainly of silts and 
clays (Fig. 2). 

Validation is the process of confirming in a documented way whether the results obtained 
by a certain method are reliable and consistent with the actual state. It involves checking the 
method validity. Validation may also refer to equipment, materials, operations, or procedures. 
Marr’s nomogram was selected to determine the soil type from CPT and CPTU tests. Cone 
probe tests and boreholes were performed on the SGGW Campus to determine the foundation 
conditions of the structures. The investigations were performed under the future buildings, 
Building 34, the SGGW Water Centre and underground parking lot. Samples for laboratory 
tests were taken from the boreholes. These tests determined the soil type at the sampling 
depths. The results of laboratory tests are considered reference data for the field test results. 
The qc and fs parameters obtained from the CPT test were plotted on Marr’s nomogram 
(Fig. 1a) and then the layer types found in particular points were determined. The next step 
was a comparison of the results from the CPT survey with the nearest borehole in a tabular 
form. The soil names were adjusted to the new EN ISO 14688-1 standard. 

The Marchetti and Crapps nomogram from 1981 was chosen to determine the soil type 
from the DMT tests. The dilatometer tests were conducted for the future buildings, 
Building 34, SGGW Water Centre, underground parking lot, and the SGGW Sport Stadium. 
The results of laboratory tests are considered a reference for in situ test results. The ED and ID 
parameters obtained from the DMT test were plotted on Marchetti’s nomogram (Fig. 2), then 
the layer types located in the following points were determined. The next step was to compare 

Fig. 9. 	 Profiles of qc, fs and Rf of CPT sounding results for the SGGW Sport Stadium
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in a tabular form. The soil names were adjusted to the 
new EN ISO 14688-1 standard.

The Marchetti and Crapps nomogram from 1981 
was chosen to determine the soil type from the DMT 
tests. The dilatometer tests were conducted for the fu-
ture buildings, Building 34, SGGW Water Centre, un-
derground parking lot, and the SGGW Sport Stadium. 
The results of laboratory tests are considered a refer-
ence for in situ test results. The ED and ID parameters 
obtained from the DMT test were plotted on Marchet-
ti’s nomogram (Fig. 2), then the layer types located in 
the following points were determined. The next step 

was to compare the results from the DMT survey with 
the nearest borehole. The soil names were adjusted 
to the new EN ISO 14688-1 standard. In the area in-
tended for the foundation of Building 34, where the 
Faculty of Forestry and Wood Technology is located, 
16 boreholes (OW), 5 DMT and 6 CPT soundings 
tests were made. The validation results are presented 
in Tables 3–6. In the area designated for the SGGW 
Water Centre (CW) foundation, 11 borings (OW)  
and 4 CPT soundings were performed. Validation re-
sults are presented in Table 7. In the area designated 
for the foundation of the underground parking (SGGW 

Table 3. 	 Summary of CPT 1 with DMT 1 and OW – 27 Building 34 results 

Depth 
[m]

OW – 27/B34 CPT 1/B34 DMT 1/B34
soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil symbolb soil typeb

2.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl clayey silt clayey silt saclSi

7.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clayey sand 

– clayey silt

lightly 
clayey sand 

– clay lightly 
clayey

saCl-siCl
sandy clay 
– lightly 

clayey sand

sandy clay 
– lightly 

clayey sand
saCl/clSa

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard (PKN, 1986); bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomo-
gram chart.

Table 4. 	 Summary of CPT 2 with DMT 1 and OW – 27 Building 34 results

Depth
[m]

OW – 27/B34 CPT 2/B34 DMT 1/B34

soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

2.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clayey sand 

– clayey silt

lightly clayey 
sand – clay 

lightly clayey
saCl-siCl clay clayey silt saclSi

7.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clayey sand 

– clayey silt

lightly clayey 
sand – clay 

lightly clayey
saCl-siCl sandy 

clayey silt

sandy clay 
– lightly 

clayey sand
saCl/clSa

10.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa fine sand 

– silty sand
fine sand 

– silty sand Fsa-siSa sandy 
clayey silt clayey silt saclSi

11.5 fine sand fine sand FSa fine sand 
– silty sand

fine sand 
– silty sand Fsa-siSa clayey silt

clay lightly 
clayey 

– sandy clay
siCl/saCl

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.
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Table 5. 	 Summary of CPT 5 with DMT 1 and OW – 27 Building 34 results

Depth 
[m]

OW – 27/B34 CPT 5/B34 DMT1/B34

soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

2.0 clayey sand
sandy clay 

– lightly 
clayey sand

saCl/clSa clay – silty 
clay

clay – silty 
clay Cl-siCl clay clayey silt saclSi

7.0 clayey sand
sandy clay 
– lightly 

clayey sand
saCl/clSa clayey sand 

–������������   clayey silt

lightly 
clayey 

sand – clay 
lightly 
clayey

saCl-siCl sandy 
clayey silt

sandy 
clay 

–lightly 
clayey 
sand

saCl/clSa

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.

Table 6. 	 Summary of CPT 6 with DMT 2 and OW – 40 Building 34 results

Depth
[m]

OW – 40/B34 CPT 6/B34 DMT 2/B34

soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

0.8–2.3 clay clay Cl clay – silty 
clay

clay – silty 
clay Cl-siCl silt silt Si

2.8–3.5 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl sandy 
clayey silt clayey silt saclSi

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.

Table 7. 	 Summary of CPT 1 with DMT 2 and OW – 3 SGGW Water Centre results

Depth
[m]

OW – 3���/CW CPT 1���/CW DMT 2���/CW

soil typea soil typeb soil sym-
bolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

2.3 clayey sand
sandy clay 

– lightly 
clayey sand

saCl/clSa clay – silty 
clay

clay – silty 
clay Cl-siCl sandy silt silty sand clSa

3.3 clayey sand
sandy clay 
– lightly 

clayey sand
saCl/clSa clayey sand 

- clayey silt

lightly 
clayey 

sand – clay 
lightly 
clayey

saCl-siCl sandy 
clayey silt clayey silt saclSi

6.0 clayey sand
sandy clay 
– lightly 

clayey sand
saCl/clSa

clayey sand 
–��������  clayey 

silt

lightly 
clayey 

sand – clay 
lightly 
clayey

saCl-siCl sandy 
clayey silt clayey silt saclSi

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.
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Parking), 10 borings (OW) and 7 CPT soundings were 
performed. Validation results are presented in Tables 8 
and 9. Within the area designated for the construction 
of the university sports facility (SGGW Sport Stadium), 
14 boreholes (OW) and 5 CPT soundings were per-
formed. Validation results are presented in Table 10.

The soil types obtained from laboratory tests and 
CPT soundings were in agreement in 28 cases out of 
48, giving an efficiency of 58.3%. Considering that 
sandy clay and silty clay have very similar character-
istics when comparing the tests, one could assume that 
it is the same type of soil. Then the results of both 

Table 8. 	 Summary of CPT 1 with DMT 1 and OW – 1 SGGW Parking results

Depth
[m]

OW – 1/�������������   SGGW Parking CPT 1/������������ SGGW Parking DMT 1������������� /SGGW Parking

soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

2.5 fine sand fine sand FSa clayey sand 
–������������   clayey silt

lightly clayey 
sand – clay 

lightly clayey
saCl-siCl fine sand FSa fine sand

4.5 clayey sand
sandy clay 

– lightly 
clayey sand

saCl/clSa clay – silty 
clay

clay – silty 
clay Cl-siCl silty sand siSa silty sand

6.0 clayey sand
sandy clay 

– lightly 
clayey sand

saCl/clSa clay – silty 
clay

clay – silty 
clay Cl-siCl

sandy clay 
– lightly 

clayey sand
saCl/clSa

sandy clay 
–lightly 

clayey sand

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.

Table 9. 	 Summary of CPT 2 with DMT 2 and OW – 12 SGGW Parking results

Depth 
[m]

OW – 12������������� /SGGW Parking CPT 2������������� /SGGW Parking DMT 2������������� /SGGW Parking
soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb

4.5 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl sandy silt sandy silt clSi

6.0 clayey 
sand

sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl silt silt Si

Places where the soils differ from each other are marked in bold.
aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.

Table 10. 	Summary of CPT 1 with DMT 6 and OW – 9 SGGW Stadium results

Depth 
[m]

OW – 9/SGGW Stadium CPT 1/SGGW Stadium DMT 6/SGGW Stadium
soil typea soil typeb soil symbolb soil typec soil typeb soil symbolb soil typed soil typeb soil symbolb 

4 clayey sand
sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl sandy 
clayey silt

sandy silty 
clay sasiCl

8 clayey sand
sandy clay 
– lightly 

clayey sand
saCl/clSa clay – silty 

clay
clay – silty 

clay Cl-siCl silty sand silty sand clSa

aAccording to: PN-B-02480 standard; bEN ISO 14688-1 standard; cMarr’s nomogram chart; dMarchetti’s nomogram chart.
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tests would agree in 83.3%. It should also be noted 
that the test sites were far away from each other, which 
in consequence could cause differences in the test re-
sults. This is especially evident in the comparison of 
the surveys from the SGGW Water Centre site, where 
in three positions show no point agreed. 

For DMT tests, an efficiency of 74.7% was ob-
tained. Considering that sandy clay and lightly clay-
ey sand have very similar material index (ID) val-
ues when comparing the surveys, one could assume 
that it is the same type of soil. Then the results of 
both tests would agree in 86.4%. It should also be  
noted that the test sites were far away from each  
other, which in consequence could cause differences 
in the test results.

CONCLUSIONS

Cone penetration tests (CPT) and Marchetti’s dilato-
meter tests (DMT) allow for an almost continuous 
measurement of soil parameters. They require spe-
cialised equipment, at the same time offering fast and 
easy testing under in situ conditions. Interpretation of 
the results using nomograms is also relatively simple 
and fast to perform, but it is necessary to take samples 
for laboratory tests in order to properly identify soil 
and geotechnical parameters. Laboratory analysis 
helps to increase the reliability of the results obtained 
and to avoid errors. Experience in conducting this type 
of analysis is also useful.

Validation of the CPT method using Marr’s nomo-
gram was successful. Despite being developed many 
years ago, the nomogram works well. Data for the 
compared sites agreed with each other in 83.3%. It 
must be taken into account that the differences may 
have arisen because the sites were not located dir- 
ectly near one another. A variable terrain may cause 
the same layers to occur at different levels.

The validation of the DMT method using Marchet-
ti’s nomogram chart should be considered as satisfac-
tory. The compared sites agree at 86.4%, similarly as 
in the CPT study. Similarly, terrain variability also in-
fluences the results. Furthermore, it should be noted 
that the principles presented by Marchetti in his first 

publication for interpreting dilatometer results are still 
valid and applicable.

The CPT and DMT tests are very useful in obtain-
ing soil data. The results are primarily reproducible and 
allow for the calculation of important soil parameters 
used in construction and environmental engineering. 
In order to increase the reliability of the results, labo-
ratory analysis of the soil samples should be applied.
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Walidacja metod interpretacji i wyznaczania rodzajów gruntów  
na podstawie sondowań geotechnicznych CPT i DMT

STRESZCZENIE 

W pierwszej części artykułu przedstawiono metodykę badań in situ sondą (CPT) oraz metody określania 
na ich podstawie rodzaju gruntu. W następnej części zaprezentowano metodykę badań terenowych testami 
dylatometrycznymi Marchettiego (DMT) oraz metody określania rodzaju gruntu na ich podstawie. Na koniec 
przeanalizowano proces walidacji sondowań CPT i DMT z metodami badań wierceń na przykładzie obiektów 
kampusu Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. W tym celu porównano wyniki badań 
laboratoryjnych z terenowymi. Walidacja rezultatów sondowań CPT z zastosowaniem nomogramu Marra 
wypadła pomyślnie. Metodykę badań DMT z wykorzystaniem nomogramu Marchettiego należy uznać za 
zadowalającą.

Słowa kluczowe: walidacja, badania in situ, CPT, DMT, wiercenie


