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INTRODUCTION

Heat treatment is important process in steel bars pro-
duction. It allows to change the material properties by 
changing its structure. The most popular heated charges 
are cylindrical bundles, which are an example of steel 
porous charge widely used in industry (Musiał, 2013; 
Kolmasiak & Wyleciał, 2018). The model of cylindri-
cal bundle of flat steel bars, considered in the present 
paper, is shown on Figure 1.

The geometry of the charge (length of bars is big-
ger than their transverse dimensions) determines that 
during heating the heat transfer processes occur in 
the radial direction. The section of the bundle is not 
homogenous – solid phase is not continuous and the 
gaps between the bars are filled with gas. Therefore 
heat transfer process is complex and consists of con-
duction within gas, conduction the bars, contact con-
duction and radiation. To simplify the model of heat 
transfer in such a bundle the effective thermal conduc-

tivity (kef) is used. It is a parameter which is widely 
used in the theory of nonhomogeneous (Bagdasaryan, 
2014; Kula & Wodzyński, 2020) and porous media 
(Kaviany, 1995; van Antwerpen, du Toit & Rousseau, 
2010; Wyczółkowski & Benduch, 2014). The effec-
tive therml conductivity simplifies the description of 
transient heat transfer in analysed bundle (Sahay & 
Krishnan, 2007). 
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fig. 1.  A model of cylindrical bundle of flat steel bars 
(own photo)
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In the manuscript authors investigate the influ-
ence of contact conduction between adjacent bars on 
the heating time of the bundle. To describe the contact 
conduction in the bundle quantitatively thermal con-
tact resistance (Rct) was applied. The values of the this 
coefficient where determined experimentally.

maTeRIal aND meThODs

In the paper the considered material of the bars was 
low-alloy steel with carbon content of 0.2%. In cal-
culations three arrangement of bars were considered: 
horizontal, vertical and mixed (Fig. 2). 

fig. 2.  Samples of flat bars with: horizontal (a), vertical 
(b) and mixed (c) arrangement (own elaboration)

Due to the dimensions of the charge it can be 
assumed that it is axially symmetric problem by 
assuming that heat transfer occur only in the radial 
direction, at a uniform heat flux (q0) on the whole cir-
cumference. Hence, geometry of the charge is defined 
by the radius of the heated bundle r0 = 0.25 m. For 
the purposes of the numerical solution, the area of the 
bundle is divided into n cylindrical elements with the 
width of Δr = r0/n (where n = 18). In the middle of 
each element there is a node, for which a temperature 
is established. The radius of the m-th node is described 
with the dependency:

( )0 0 5 ..mr r m r= − − ∆    (1)

In order to solve a transient heat conduction prob-
lem, energy balance method has been used, accord-
ing to which the rate of heat conduction to the m-th 
element from the adjacent elements (Qjm) is equal to 
the change in the energy content of an element during 
time interval (Δτ). Using the explicit approach, it can 
be represented with the following dependency (Cen-
gel, 2007):
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The boundary condition used in the solution is heat transfer rate which flows in to the 
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where:  
h – convection heat transfer coefficient,  
ε – surface emissivity (ε = 0.7),  
σ – Stefan-Boltzmann constant,  
TF, To – thermodynamic temperatures of the furnace and bundle surface.  
 

The bundle was considered under conditions when the furnace temperature is rising up 
to the final value in the function of time as follows: 

TF = 20 + 0.173τ,    (8) 
where time (τ) is expressed in seconds. Upon reaching the final value, for the rest of the 
process temperature (TF) is kept constantly at this level. The final value of the furnace 
temperatue was assumed as 750°C. 
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experimentally and used to determine the effective thermal conductivity of the bundle 
(Kolmasiak, Wyleciał, Bagdasaryan & Gała, 2021). The mean values of effective thermal 
conductivity for 12 considered cases (two bar sizes, three arrangement and two values of Rct) 
are shown in Tables 1 and 2. 
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ResUlTs

Obtained results has been shown in the form of figures 
and tables. Figures 3–8 present the results of computa-
tions of bundle heating process for investigated cases. 
The diagrams show the temperature of chosen points 
of the section in the time function. Chosen points are: 
to – the surface of the charge, t1 – 2/3ro, t2 – 1/3ro, t3 
– the axis of the charge. Diagrams marked with the 
letter (a) relate to resistance Rct-min; diagrams marked 
with the letter (b) relate to resistance Rct-max.

Table 1.   Mean values of effective thermal conductivity (kef) for 5 × 20 mm size bars (own elaboration)

Parameter
[W·m–1·K–1]

Steel bars arrangement
horizontal vertical mixed 

Rct-min Rct-max Rct-min Rct-max Rct-min Rct-max

kef  2.01 1.19 6.95 4.35 4.66 2.84

Table 2.  Mean values of effective thermal conductivity (kef) for 10 × 40 mm size bars (own elaboration)

Parameter
[W·m–1·K–1]

Steel bars arrangement
horizontal vertical mixed 

Rct-min Rct-max Rct-min Rct-max Rct-min Rct-max

kef 3.82 2.31 11.8 7.81 8.32 5.29
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with the letter (a) relate to resistance Rct-min; diagrams marked with the letter (b) relate to 
resistance Rct-max. 
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Table 1. Mean values of effective thermal conductivity (kef) for 5 × 20 mm size bars (own 
elaboration) 

Parameter 
[W·m–1·K–1] 

 Steel bars arrangement  
horizontal  vertical  mixed  

Rct-min Rct-max Rct-min Rct-max Rct-min Rct-max 

kef   2.01 1.19 6.95 4.35 4.66 2.84 

 
Table 2. Mean values of effective thermal conductivity (kef) for 10 × 40 mm size bars (own 
elaboration) 

Parameter 
[W·m–1·K–1] 

 Steel bars arrangement  
horizontal  vertical  mixed  

Rct-min Rct-max Rct-min Rct-max Rct-min Rct-max 

kef  3.82 2.31 11.8 7.81 8.32 5.29 

 
RESULTS 
Obtained results has been shown in the form of figures and tables. Figures 3–8 present the 
results of computations of bundle heating process for investigated cases. The diagrams show 
the temperature of chosen points of the section in the time function. Chosen points are: to – 
the surface of the charge, t1 – 2/3ro, t2 – 1/3ro, t3 – the axis of the charge. Diagrams marked 
with the letter (a) relate to resistance Rct-min; diagrams marked with the letter (b) relate to 
resistance Rct-max. 
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fig. 4.  Temperature change in the time function in chosen points of section for 5 × 20 bars with vertical arrangement:  
(a) results for Rct-min; (b) results for Rct-max (own elaboration)
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Fig. 5. Temperature change in the time function in chosen points of section for 5 × 20 bars 
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Fig. 6. Temperature change in the time function in chosen points of section for 10 × 40 bars 
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Fig. 7. Temperature change in the time function in chosen points of section for 10 × 40 bars 
with vertical arrangement: (a) results for Rct-min; (b) results for Rct-max (own elaboration) 
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fig. 5.  Temperature change in the time function in chosen points of section for 5 × 20 bars with mixed arrangement:  
(a) results for Rct-min; (b) results for Rct-max (own elaboration)
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fig. 6.  Temperature change in the time function in chosen points of section for 10 × 40 bars with horizontal arrangement: 
(a) results for Rct-min; (b) results for Rct-max (own elaboration)
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During the analysis it was important to determine 
the time necessary to reach 720°C in the axis of the 
charge. Table 3 shows the results for the investigated 
samples (H – horizontal arrangement, V – vertical 
arrangement, M – mixed arrangement) taking into 
account Rct-min and Rct-max (denoted by τmin and τmax 
respectively). To show the difference quantitavely Δτ 
was calculated by the equation:

  (9)

Table 3.   The results of heating time up to reaching 720°C 
in the axis of the charge (own elaboration)

Sample τmin
[min]

τmax
[min]

Δτ
[%]

5 × 20 H 189 223 15

5 × 20 V 158 165 4

5 × 20 M 163 172 5

10 × 40 H 166 181 8

10 × 40 V 155 159 3

10 × 40 M 157 161 2
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Fig. 7. Temperature change in the time function in chosen points of section for 10 × 40 bars 
with vertical arrangement: (a) results for Rct-min; (b) results for Rct-max (own elaboration) 
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fig. 7.   Temperature change in the time function in chosen points of section for 10 × 40 bars with vertical arrangement: 
(a) results for Rct-min; (b) results for Rct-max (own elaboration) 

 

 
Fig. 8. Temperature change in the time function in chosen points of section for 10 × 40 bars 
with mixed arrangement: (a) results for Rct-min; (b) results for Rct-max (own elaboration) 
 

During the analysis it was important to determine the time necessary to reach 720°C 
in the axis of the charge. Table 3 shows the results for the investigated samples (H – 
horizontal arrangement, V – vertical arrangement, M – mixed arrangement) taking into 
account Rct-min and Rct-max (denoted by τmin and τmax respectively). To show the difference 
quantitavely Δτ was calculated by the equation: 
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Table 3. The results of heating time up to reaching 720°C in the axis of the charge (own 
elaboration) 
Sample τmin 

[min] 
τmax 

[min] 
Δτ 

[%] 
5 × 20 H 189 223 15 

5 × 20 V 158 165 4 

5 × 20 M 163 172 5 

10 × 40 H 166 181 8 

10 × 40 V 155 159 3 

10 × 40 M 157 161 2 

 
CONCLUSIONS 
In the present paper the heating times of a bundle of steel bars in chosen arrangements were 
calculated. As it is shown it is possible to reduce heating time even by 15% thanks to certain 
arrangement. Other factor that has an influence on decreasing of the heating time is increasing 
of the force, which is used during preparing the bundle. Investigation of other factors (such as 
the force used during preparing the bundle or accuracy of bar arrangement) having influence 
on heating time will be the next stage of authors’ works. 
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fig. 8.  Temperature change in the time function in chosen points of section for 10 × 40 bars with mixed arrangement:  
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CONClUsIONs

In the present paper the heating times of a bundle of 
steel bars in chosen arrangements were calculated. As 
it is shown it is possible to reduce heating time even by 
15% thanks to certain arrangement. Other factor that 
has an influence on decreasing of the heating time is 
increasing of the force, which is used during prepar-
ing the bundle. Investigation of other factors (such as 
the force used during preparing the bundle or accuracy 
of bar arrangement) having influence on heating time 
will be the next stage of authors’ works.
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baDaNIe CzasU NagRzewaNIa wIązKI pRęTów sTalOwyCh

sTReszCzeNIe

Praca przedstawia zagadnienia związane z wyznaczaniem czasu nagrzewania w wiązce płaskich prętów 
stalowych. Do opisu matematycznego modelu niestacjonarnego przewodzenia ciepła wykorzystano metodę 
bilansu energetycznego. Kluczowym elementem zadania było wyznaczenie efektywnego współczynnika 
przewodzenia ciepła, wykorzystując analogie elektryczne. Symulacje nagrzewania wiązki prętów przepro-
wadzono w przypadku rosnącej temperatury pieca. Wyniki pokazują, że wraz ze zmianą rozmiarów oraz 
ułożenia prętów w wiązce czas nagrzewania można zredukować o 5–40%. Rozpatrywane zagadnienie ma 
istotne znaczenie z praktycznego punktu widzenia, ponieważ ma związek z optymalizacją procesów obróbki 
cieplnej prętów stalowych. 

słowa kluczowe: stalowy wsad porowaty, efektywna przewodność cieplna, obróbka cieplna, czas nagrzewania 


