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absTracT

The object of analysis is a heat conduction problem within the framework of tolerance modelling in fourth- 
-component biperiodic composite. Two materials are isotropic and two are orthotropic, and additionally sym-
metry axes of orthotropic ones are rotated with respect to each other by an angle equal 90°. The results of 
some special boundary conditions for stationary problem of heat conduction were obtained from the local ho-
mogenization model (LHM). The model equations were derived by simplifying the equations of the standard 
tolerance model (STM), which were obtained based on two model assumptions: micro-macro decomposition 
of the temperature field and residual function averaging, after introducing the concept of  “weakly slowly 
varying function” (WSV) and “slowly varying function” (SV) into the modelling process. The presented 
examples show the influence of the given boundary conditions on the macro-temperature distribution and on 
the distribution of the approximate temperature field θ(). The effect of thermal conductivity of the component 
materials and the number of periodicity cells on temperature distribution was also shown.
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ABSTRACT 
The object of analysis is a heat conduction problem within the framework of tolerance modelling in fourth-component 
biperiodic composite. Two materials are isotropic and two are orthotropic, and additionally symmetry axes of 
orthotropic ones are rotated with respect to each other by an angle equal 90°. The results of some special boundary 
conditions for stationary problem of heat conduction were obtained from the local homogenization model (LHM). 
The model equations were derived by simplifying the equations of the standard tolerance model (STM), which were 
obtained based on two model assumptions: micro-macro decomposition of the temperature field and residual function 
averaging, after introducing the concept of  “weakly slowly varying function” (WSV) and “slowly varying function” 
(SV) into the modelling process. The presented examples show the influence of the given boundary conditions on the 
macro-temperature distribution and on the distribution of the approximate temperature field θ(). The effect of thermal 
conductivity of the component materials and the number of periodicity cells on temperature distribution was also 
shown. 
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The problem of heat conduction in periodic layered composites has been well known and extensively described 
in the literature. The basic difficulty in modelling the problem of heat conductivity in composites with 
unidirectional periodicity is the use of such a technique that will allow for the replacement of highly oscillating 
coefficients in the partial differential equations of heat conduction with coefficients that will have constant values. 

One of the methods of modelling this type of structure is asymptotic homogenization introduced by Jikov, 
Kozlov and Oleinik (1994). There are also a number of papers in the literature on obtaining averaged characteristics 
of material properties for periodic composites in a different way. One can mention the method proposed by 
Woźniak (1987), called the method of microlocal parameters. Another methods are tolerance averaging technique 
and the asymptotic variant of tolerance modelling called local homogenization (Woźniak & Wierzbicki, 2000; 
Woźniak, Michalak & Jędrysiak, 2008; Awrajcewicz et al., 2010). The above-mentioned models make it possible 
to describe and determine approximate solutions of heat conduction and elastostatics problem for two-component 
layered composites with a periodic structure or with a structure with a functional gradation of effective properties. 

In the case of bi- or three-directional periodic composites, introducing an averaged model is possible if certain 
additional conditions for the construction of this composite are met (Jikov et al., 1994). This means that only for 
a certain class of bi- or three-directional periodic composites it is possible to determine the model equations within 
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the framework of asymptotic homogenization, tolerance modelling (tolerance averaging technique) or local 
homogenization. For bidirectionally periodic composites, in which the periodicity cell is built of four different 
materials, homogenization is possible, for example, when two materials are isotropic and two are orthotropic, and 
additionally orthotropic materials have correspondingly arranged axes of symmetry. This was proven by Czarnecka 
(2014). The material properties of the components and their alignment must ensure that the composite behaves 
in a streaked manner. The analysis of heat conductivity problems in composites constructed in this way can be found, 
for example, in the works by Szlachetka, Wągrowska and Woźniak (2013), Czarnecka (2014), Wągrowska and 
Woźniak (2014), Wągrowska and Szlachetka (2015), Kubacka and Ostrowski (2021). 

The subject of the considerations is the issue of heat conduction in rigid, bidirectional periodic composites. 
The considered composite occupies the area in three-dimensional Cartesian space  3Ω 0, L Ξ , where 

   1 20, 0, L L Ξ . Let denote by  1 2 3x ,x ,xx  the points belonging to the area Ω, where 

1 1 2 2 3 3(0, ),  (0, ),  (0, )x L x L x L   . It means that the composite under consideration is a biperiodic 
composite in the plane Ox1,x2, with periodical periods in the direction of the axis Ox1 and Ox2 equal to η1 and η2, 
respectively. The composite scheme is shown in Figure 1. 

 
     Scheme of the composite (Wągrowska & Szlachetka, 2015) 

 
It should be emphasized that ηα where α = 1, 2, is a positive parameter, i.e. ηα  > 0, which is much smaller 

than the dimension of the characteristic area Ω, i.e. ηα << Lα. 

Let denote the points      1 2 1 1 2 2
1 1, 1 , 1
2 2i jx x i j         

 
, where i = 1, …, n; j = 1, …, m. Thus 

the periodic cell can be defined as  1 2 1 1 1 1 2 2 2 2
1 1 1 1Δ , , ,
2 2 2 2i j i i j jx x x x x x              

   
. 

A scheme of a repeating cell is shown in Figure 2. 
 

 
     Diagram of the periodicity cell (Wągrowska & Szlachetka, 2015) 
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It was assumed here as in Czarnecka (2014) and Kubacka and Ostrowski (2021) that the periodicity cell 
is built of four materials: two isotropic and two orthotropic, of which the orthotropic ones are characterized 
by the fact that their symmetry axes are rotated by an angle equal 90°. 

The considered composite has a biperiodic structure (periodic in two different directions) this implies that 
the structure can be defined by a certain functions φα1 = φα1(x), α = 1, 2 (Woźniak et al., 2008), which describes 
the fractions of the materials. This functions are a differentiable functions, defined in area Ξ , such that 
0 < φα1 < 1 which are slowly varying in the area Ω occupied by the composite. Functions φα1 can be understood 
as a functions of the saturation of the composite with a given material. 

It follows that the dimensions of the areas occupied by a given material in the periodic cell can be written 
as: 1 1l    , 2 2l    where 2 11     and 1 2l l     for each x. 

Matrices of heat conduction coefficients  hlK  and specific heat hlc  in a given cell 

 1 2, , 1, 2,  h, 1, 2 hl
i jx x i j l    take the form (Czarnecka, 2014): 
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.

 

 
The Fourier equation for the temperature field  ,t  x , assuming that there are no heat sources acting 

in the area occupied by the considered composite, can be written as: 
   0, , 1, 2,t k

        c  (1) 

where: 
θ(·,·) – θ – temperature in the area Ω for each time  *0,t t ,  

 ,  ,  t c
x t 

 
    

 
 – specific heat, 

( )k   – thermal conductivity coefficients such that ( ) 0 for k     .  
 

�quation (1) is a partial differential equation with discontinuous and highly oscillating coefficients.  
The process of tolerance modelling of heat conductivity in multicomponent biperiodic composites is based 

on the concept of slow-varying functions, tolerance averaging approximation and oscillating shape function. 
Individual definitions of these terms will be provided in the next semi-chapter. 

The concept of a slowly varying function (Woźniak et al., 2008; Awrajcewicz et al., 2010) is closely related to 
the concept of tolerance. 

The tolerance relation is defined as a binary relation – reflexive and symmetric. An example of such 
a relation between points in space R × R is the relation of indistinctness with the parameter of tolerance (δ). 
This means that each pair of numbers such   2, R    – is within tolerance δ (which can be symbolically 

written:  )   if and only if the norm from the difference μ and ν is less than or equal to δ, i.e.     . 
The tolerance relationship defined in this way can be found in monographs (Woźniak et al., 2008; 
Awrajcewicz et al., 2010). 
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In Woźniak et al. (2008), Awrajcewicz et al. (2010) and Woźniak, Wągrowska and Szlachetka (2015) there 
were introduced two classes of slowly varying and differentiable functions. These functions are called “weakly 
slowly varying functions” and “slowly varying functions”, and denoted as WSV and SV, respectively. 

Let Π stand for an arbitrary convex set in the space Rm and  1 Πf C  be an arbitrary real-valued 

function. Let also introduce the tolerance parameter  0 1, ,d     as a triplet of real positive numbers and use 

the notation , 1, ..., j
j

 j m
x


  


. 

Function    1 1WSVdf C    if the condition x y    yields the conditions 

   
0

f x f y    and     1j jf x f y     for j = 1, …, m for all pairs   2, Πx y  . If 

 1WSV Πdf   additionally meets the condition   0j f x    for j = 1, …, m for every Πx , then 

 1SVdf   . Obviously, this means that    1 1SV Π WSV Πd d . 

Let determine that Δ(x) for 2Rx  be a periodic cell with center on point 2Rx  of the biperiodic composite. 
Define also 0Ω Ω   as: 

  0Ω Ω:   Δ Ωx  x . 

For any function g(·) integrable with square on the set 2( ( ))g L   , the averaging of this function at 

a point 0 Ωx  is equal: 

  
 

  1 2Δ
1 2

1
x

yg x g dy dy


  . (2) 

 
When  2 Ωg L  and  1WSV Πdf  , then the tolerance averaging approximation is understood as the 

approximation of the functions:  T
gf x  and 

T
g f  by the functions    g x f x  and    g x f x , 

respectively. 

Let introduce 1 1( , )x i x i  ,  2 2,  j jx x   as an arbitrary pairs of planes in the space R2 which there are parallel 

interfaces between individual cells of periodicity: 

1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1, , , , 1,…, , 1,…, 
2 2 2 2i i i i j j j jx x x x x x x x i n  j m.                 

The plane separating the materials in a cell is defined as 1 2x lx l x    
     , where 1 2ori jx x x

    

and 1 2ori jx x x
   . 

The real-valued function   0 0, C L
   where α = 1, 2 are said to be fluctuation shape functions. 

They are linear continuous functions in the intervals depending only on one argument and taking values on 

individual interfaces as follow:   2
x 


    ,   2
x 


    ,    
2

x 


  . The scheme of the 

fluctuation shape function is shown in Figure 3. 
 

 
     Scheme of the fluctuation shape function (Wągrowska & Szlachetka, 2015) 

 

The tolerance modelling procedure is based on two assumptions. In the first assumption called micro-macro 
decomposition of the temperature field, the temperature function θ(·) is approximated by the function ( )   
in the form (Czarnecka, 2014; Wągrowska & Woźniak, 2014): 
              1 2

1 1 2 2, , , ,, , xx x x xt x t xt t t         (3) 

where for every  3 30, x L fields: 

  3, , x t   and  3, , ,  = 1, 2x t   are the unknown functions called macro-temperature and 
amplitudes of temperature fluctuations, respectively. 

 Functions   , 1, 2   , are fluctuation shape functions introduced in the previous semi-chapter. 
In order to formulate the second modelling assumption, let us introduce residual function: 

         x x x tr k c
         . (4) 

 

�esidual function is defined almost everywhere in  Ω 0,  *t  and ( )   is defined by �quation (3). The 
second assumption in modelling procedure can be formulated as follows: 

 1 20, 0,  ,    
T T

r rh x x   Ξ . Obviously, the above-introduced tolerance averages are also defined 

for all (x3, t). In tolerance modelling, in general tolerance model (�TM), about the functions  3, ,  x t   and 



l1 l2

x
xx



x
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function. Let also introduce the tolerance parameter  0 1, ,d     as a triplet of real positive numbers and use 

the notation , 1, ..., j
j

 j m
x


  


. 

Function    1 1WSVdf C    if the condition x y    yields the conditions 

   
0

f x f y    and     1j jf x f y     for j = 1, …, m for all pairs   2, Πx y  . If 

 1WSV Πdf   additionally meets the condition   0j f x    for j = 1, …, m for every Πx , then 

 1SVdf   . Obviously, this means that    1 1SV Π WSV Πd d . 

Let determine that Δ(x) for 2Rx  be a periodic cell with center on point 2Rx  of the biperiodic composite. 
Define also 0Ω Ω   as: 

  0Ω Ω:   Δ Ωx  x . 

For any function g(·) integrable with square on the set 2( ( ))g L   , the averaging of this function at 

a point 0 Ωx  is equal: 

  
 

  1 2Δ
1 2

1
x

yg x g dy dy


  . (2) 

 
When  2 Ωg L  and  1WSV Πdf  , then the tolerance averaging approximation is understood as the 

approximation of the functions:  T
gf x  and 

T
g f  by the functions    g x f x  and    g x f x , 

respectively. 

Let introduce 1 1( , )x i x i  ,  2 2,  j jx x   as an arbitrary pairs of planes in the space R2 which there are parallel 

interfaces between individual cells of periodicity: 

1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1, , , , 1,…, , 1,…, 
2 2 2 2i i i i j j j jx x x x x x x x i n  j m.                 

The plane separating the materials in a cell is defined as 1 2x lx l x    
     , where 1 2ori jx x x

    

and 1 2ori jx x x
   . 

The real-valued function   0 0, C L
   where α = 1, 2 are said to be fluctuation shape functions. 

They are linear continuous functions in the intervals depending only on one argument and taking values on 

individual interfaces as follow:   2
x 


    ,   2
x 


    ,    
2

x 


  . The scheme of the 

fluctuation shape function is shown in Figure 3. 
 

 
     Scheme of the fluctuation shape function (Wągrowska & Szlachetka, 2015) 

 

The tolerance modelling procedure is based on two assumptions. In the first assumption called micro-macro 
decomposition of the temperature field, the temperature function θ(·) is approximated by the function ( )   
in the form (Czarnecka, 2014; Wągrowska & Woźniak, 2014): 
              1 2

1 1 2 2, , , ,, , xx x x xt x t xt t t         (3) 

where for every  3 30, x L fields: 

  3, , x t   and  3, , ,  = 1, 2x t   are the unknown functions called macro-temperature and 
amplitudes of temperature fluctuations, respectively. 

 Functions   , 1, 2   , are fluctuation shape functions introduced in the previous semi-chapter. 
In order to formulate the second modelling assumption, let us introduce residual function: 

         x x x tr k c
         . (4) 

 

�esidual function is defined almost everywhere in  Ω 0,  *t  and ( )   is defined by �quation (3). The 
second assumption in modelling procedure can be formulated as follows: 

 1 20, 0,  ,    
T T

r rh x x   Ξ . Obviously, the above-introduced tolerance averages are also defined 

for all (x3, t). In tolerance modelling, in general tolerance model (�TM), about the functions  3, ,  x t   and 
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 3, , , 1, 2x t    it is assumed that they are weakly slowly varying functions, 

i.e.         1
3 3 1 2, , ,  , , WSV 0, 0,  dx t x t L L      for each x3 and  0, * t t  (Nagórko & Woźniak, 

2011; Czarnecka, 2014; Woźniak, Wągrowska & Szlachetka, 2015). 
In this paper it was assumed that the unknown functions are slow-varying functions, 

i.e.           1
3 3 1 2 3, , , , , SV 0, 0, , dx t x t L L x t      . This assumption leads to the standard 

tolerance model (STM) equations. The equations of the STM for the stationary problem and in the absence of 
heat sources acting in the area occupied by the considered composite take the form: 

   0,tk k c  
              (5a) 

      2 2 22 1 11 1 11
1

1 1 11
1 1 1 1 1 1 0,tk k k c                 (5b) 

      22 2 22 2 22 2 2
2 2 2 2 2 2 2

2 2 22 0.tk k k c                 (5c) 

where:  
    . 

 

Based on Woźniak et al. (2015) let assume that         1
3 1 2 3, , SV 0, 0,  ,dx t L L x t      and 

    1SV 0, *d t     with the extra assumption that terms     2

2 21 2
1,  t tc c     in (4) can 

be neglected. 

In this case �quation (5a) remains unchanged. Terms    2 211 1 2 22 2 2
1 1 2 2, k k     vanish 

because     1SV 0, *d t    . And neglecting terms     2

2 21 2
1,  t tc c     we obtain the 

equations of the local homogenization model (LHM) (Nagórko & Woźniak, 2011; Woźniak et al., 2015): 
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 (6) 

 

This paper deals with stationary heat conductivity problem. It involves, that the term 1tc   vanishes 
and �quations (6) take the form: 

   0, k k  
           (7a) 

  211 1 11 1
1 1 1 1 1 0,k k         (7b) 

  222 2 22 2
2 2 2 2 0.k k         (7c) 

It follows from (7b) and (7c) that:  
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 
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     

 
 (8) 

In view of �elationships (8), �quation (7a) yields to:  
  11 22

1 1 2 2 30,  Ω 0,  ,eff effk k x L          (9) 
where: 

 
   

1 1

11 22
11 22

1 2

1 1,      eff effk k
k x k x

 

  . (10) 

 
�quation (9) and �elationships (8) along with the boundary conditions for the searched function ϑ(·) are 

analogous to the equations obtained as a result of applying the asymptotic approach by Czarnecka (2014). The 
same solution was achieved by Kubacka and Ostrowski (2021) using tolerance modelling based on �ulerian- 
-Lagrangian equations. It should be emphasized that �quation (9) obtained as a result of the tolerance modelling 
process, assuming that         1

3 1 2 3, , SV 0, 0, ,  dx t L L x t      and     1SV Ω 0,  *  d t     for 

stationary problems has constant coefficients  11 22,eff effk k  as opposed to �quation (1). 

After solving the correctly posed boundary problem for ϑ(·) and determining the ψα(·), α = 1 , 2 form (8) 
the temperature field ( )   in a biperiodic composite should be determined from �quation (3). 

Let assume the boundary conditions on macro-temperature ϑ(·) in form:    1 1 1, 0 ,x a x 

           1 2 2 1 2 1 2 1 2 2 2, , 0, , , x L a x x b x L x b x     , solved using the method of separation of 
variables (Bagdasaryan & Chalecki, 2016; Zill, 2016).  

Then the solution for ϑ(·) takes the form: 
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where: 
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 3, , , 1, 2x t    it is assumed that they are weakly slowly varying functions, 

i.e.         1
3 3 1 2, , ,  , , WSV 0, 0,  dx t x t L L      for each x3 and  0, * t t  (Nagórko & Woźniak, 

2011; Czarnecka, 2014; Woźniak, Wągrowska & Szlachetka, 2015). 
In this paper it was assumed that the unknown functions are slow-varying functions, 

i.e.           1
3 3 1 2 3, , , , , SV 0, 0, , dx t x t L L x t      . This assumption leads to the standard 

tolerance model (STM) equations. The equations of the STM for the stationary problem and in the absence of 
heat sources acting in the area occupied by the considered composite take the form: 

   0,tk k c  
              (5a) 

      2 2 22 1 11 1 11
1

1 1 11
1 1 1 1 1 1 0,tk k k c                 (5b) 

      22 2 22 2 22 2 2
2 2 2 2 2 2 2

2 2 22 0.tk k k c                 (5c) 

where:  
    . 

 

Based on Woźniak et al. (2015) let assume that         1
3 1 2 3, , SV 0, 0,  ,dx t L L x t      and 

    1SV 0, *d t     with the extra assumption that terms     2

2 21 2
1,  t tc c     in (4) can 

be neglected. 

In this case �quation (5a) remains unchanged. Terms    2 211 1 2 22 2 2
1 1 2 2, k k     vanish 

because     1SV 0, *d t    . And neglecting terms     2

2 21 2
1,  t tc c     we obtain the 

equations of the local homogenization model (LHM) (Nagórko & Woźniak, 2011; Woźniak et al., 2015): 
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This paper deals with stationary heat conductivity problem. It involves, that the term 1tc   vanishes 
and �quations (6) take the form: 

   0, k k  
           (7a) 

  211 1 11 1
1 1 1 1 1 0,k k         (7b) 

  222 2 22 2
2 2 2 2 0.k k         (7c) 

It follows from (7b) and (7c) that:  
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In view of �elationships (8), �quation (7a) yields to:  
  11 22

1 1 2 2 30,  Ω 0,  ,eff effk k x L          (9) 
where: 
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�quation (9) and �elationships (8) along with the boundary conditions for the searched function ϑ(·) are 

analogous to the equations obtained as a result of applying the asymptotic approach by Czarnecka (2014). The 
same solution was achieved by Kubacka and Ostrowski (2021) using tolerance modelling based on �ulerian- 
-Lagrangian equations. It should be emphasized that �quation (9) obtained as a result of the tolerance modelling 
process, assuming that         1

3 1 2 3, , SV 0, 0, ,  dx t L L x t      and     1SV Ω 0,  *  d t     for 

stationary problems has constant coefficients  11 22,eff effk k  as opposed to �quation (1). 

After solving the correctly posed boundary problem for ϑ(·) and determining the ψα(·), α = 1 , 2 form (8) 
the temperature field ( )   in a biperiodic composite should be determined from �quation (3). 

Let assume the boundary conditions on macro-temperature ϑ(·) in form:    1 1 1, 0 ,x a x 

           1 2 2 1 2 1 2 1 2 2 2, , 0, , , x L a x x b x L x b x     , solved using the method of separation of 
variables (Bagdasaryan & Chalecki, 2016; Zill, 2016).  

Then the solution for ϑ(·) takes the form: 
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where: 
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Solution for macro-temperature can be solved also using for example finite difference method (Kubacka 
& Ostrowski, 2021). 

 

Let consider the four-component biperiodic structure of the composite. The composite occupied area 

Ω = (0, L1) × (0, L2) · R. Let L1 = L2 = 1 [m], 1
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6
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2 3
L  . Let assume that the components are 

homogeneous, where two of them are isotropic and two are orthotropic with a components of the matrix of 
thermal conductivity coefficients equal: k11 = 0.25 W·m–1·K–1 and k22 = 0.5 W·m–1·K–1. In examples assume that 
the saturation functions are equal φ11 = 0.6, φ21 = 0.2 then φ12 = 1 – φ11 = 0.4 and φ22 = 1 – φ21 = 0.8.  

Let determine the approximate temperature distribution in the considered conductor, taking 20 terms in the 
series (11) and under the macro-temperature boundary conditions in the form: 
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The distribution of the approximate temperature field is ( )   in analysed examples are shown in Figure 4, 

while Figure 5 shows the contour plot of this distributions. 

To observe the effect of the number of cells periodicity, in �xample 2 – changed the value of 1
1 6

L   to 

1
1 2

L  . The result of macro-temperature distribution in 3D and in contour plot in this case is show on Figure 6. 
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     Temperature ( )   distribution: a – �xample 1; b – �xample 2 
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     Temperature ( )  contour plot: a – �xample 1; b – �xample 2 
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     Temperature ( )  for �xample 2 with assumption that 1
1 2

L  : a – distribution in 3D; b – contour plot 

 
Apparently, it might appear that graph of macro-temperature for smaller number of cells is smoother than 

for larger number, but note that the kinks in the graph are where the different materials connect – that is, the less 
interfaces, the less kink in the graph. This smoothness should not be confused with the convergence of the macro- 
-temperature graph to the micro-temperature graph. It is clear that the more the number of cells tends to infinity 
the macro-temperature graph tends to the micro-temperature graph (Fig. 7).  
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modelowanie Tolerancyjne przewodzenia ciepła w czTerosKładniKowym 
Kompozycie biperiodycznym

sTreszczenie

Przedmiotem analizy jest problem przewodnictwa ciepła w ramach modelowania tolerancyjnego. W artykule 
przedstawiono rozwiązanie pewnego szczególnego problemu brzegowego dla stacjonarnego zagadnienia prze-
wodnictwa ciepła w kompozytach w czteroskładnikowych sztywnych kompozytach biperiodycznych. Dwa ma-
teriały są izotropowe i dwa są ortotropowe, a dodatkowo osie symetrii materiałów ortotropowych są obrócone 
względem siebie o kąt równy 90°. Rozwiązania pewnych szczególnych warunków brzegowych dla stacjo-
narnego zagadnienia przewodzenia ciepła wyznaczono z modelu lokalnej homogenizacji (LHM). Równania 
modelu uzyskano, upraszczając równania standardowego modelu tolerancyjnego (STM), które otrzymano 
na podstawie dwóch założeń modelowych: mikro-makro dekompozycji pola temperatury i uśredniania funk-
cji rezydualnej, po wprowadzeniu do procesu modelowania koncepcji „funkcji słabo wolnozmiennej” (WSV) 
i „funkcji wolnozmiennej” (SV). Przedstawione przykłady pokazują wpływ zadanych warunków brzegowych 
na rozkłady mikrotemperatury oraz przybliżonego pola temperatury θ(). Widoczny jest również wpływ prze-
wodności cieplnej materiałów składowych oraz liczby komórek periodyczności na rozkład temperatury.

słowa kluczowe: kompozyt biperiodyczny, modelowanie tolerancyjne, przewodnictwo ciepła


