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INTRODUCTION

In the field of geotechnical engineering, the major 
functions of geotextiles can be listed: filtration, drain-
age, separation and reinforcement. Of these, the fil-
tration, drainage and separation functions interact 
with each other, so improving the overall drainage 
performance (Sato, Yoshida & Futaki, 1986; Yoo & 
Kim, 2016; Portelinha & Zornberg, 2017; Brózda & 
Selejdak, 2019). 

The drainage systems and filters made by natural 
materials, such as gravel and sand, are being replaced 
by synthetic materials, mainly because of difficult of 
obtaining good quality natural materials and transport-
ing materials from great distances. Also important fac-
tors for the use of geosynthetics are the cost reductions, 
the thickness reduction of filter layer, the agility of 
execution of work and stocking facility (Vieira, Abra-

mento & Campos, 2010; Heibaum, 2014; Palmeira & 
Trejos Galvis, 2018). 

When a nonwoven geotextile is placed in a soil 
matrix and a hydraulic gradient is applied across the 
interface, migration of the soil particles adjacent to the 
geotextile occurs. Three types of particles may occur 
(Rowe & McIsaac, 2005; Koerner & Koerner, 2015; 
Miszkowska et al., 2016; Shukla, 2016; Fatema & 
Bhatia, 2018):
-	 small particles may be transported through the non-

woven geotextile and into drainage media (piping); 
some degree of particle transport through the geo-
textile should occur whenever it is placed against 
fine-grained soils. This transport continues until 
a stable filter cake develops at the soil/geotextile 
interface;

-	 small to intermediate size soil particles may be elec-
trostatically attracted to the fibres of the geotextile 
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or may lodge in the pores of the fabric; the reduc-
tion in the pore volume of the geotextile caused by 
accumulation of soil particles is termed “physical 
clogging” and results in reduced flow capacity of 
the drain (Fig. 1). Clogging can be also caused by 
biological and/or chemical processes;

-	 a transitional filter may develop in the soil resulting 
from successive filtration of fine grained soils; the 
formation of “filter cake” in the soil at the soil/geo-
textile interface results in a reduced flow capacity 
across the interface which is called blinding. 
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Fig. 1. Physical clogging of nonwoven geotextile 

 
Also three criteria must be met in designing of filtration systems (Lawson, 1982; 

Giroud, 2010; Moraci, 2010; Miszkowska, Krzywosz & Koda, 2017):  
- retention – the pore-channels of the filter should be small enough to retain the erodible 

soils and prevent piping; 
- permeability – the pore-channels should be large enough to enable water to flow away 

freely from the protected soils, thus preventing the build-up of excess hydrostatic 
pressure; 

- clogging resistance – flow requirements must be maintained over the design life of the 
structure. 

Therefore the performance of geotextile filters is controlled by following factors 
(Table 1). 
 
Table 1. The main factors effecting on filter properties (Hoare, 1982) 
Material Factor 

Geotextile Pore size distribution (characteristic opening size), porosity, thickness, fibre size 

Soil Grain size and its distribution, porosity, permeability, cohesiveness 

Soil + Geotextile External stress and strain 

Water Hydraulic conditions 

 
What is more, in order to experimentally evaluate the drainage performance of a 

geotextile incorporated with a soil, the test method employed should simulate the actual 
interaction between the geotextile and the soil. According to some of the previous s studies, 
for example Calhoun (1972), Haliburton and Wood (1982), it was proposed that the drainage 
performance of geotextiles be estimated by gradient ratio tests. Gradient ratio (GR) is defined 
as the hydraulic gradient through the lower 25 mm of the soil plus geotextile divided by the 
hydraulic gradient through the adjacent 50 mm of the soil, according the standard 
ASTM D5101-1 (ASTM International [ASTM], 2012). Gradient ratio values exceeding 3.0, 
were believed to signify excessive nonwoven geotextile clogging (Carroll, 1983; Giroud, 
2010; Fannin, 2015). 

Fig. 1.	� Physical clogging of nonwoven geotextile

Also three criteria must be met in designing of fil-
tration systems (Lawson, 1982; Giroud, 2010; Moraci, 
2010; Miszkowska, Krzywosz & Koda, 2017): 
-	 retention – the pore-channels of the filter should be 

small enough to retain the erodible soils and pre-
vent piping;

-	permeability – the pore-channels should be large 
enough to enable water to flow away freely from 
the protected soils, thus preventing the build-up of 
excess hydrostatic pressure;

-	 clogging resistance – flow requirements must be 
maintained over the design life of the structure.
Therefore the performance of geotextile filters is 

controlled by following factors (Table 1).

Table 1.	� The main factors effecting on filter properties 
(Hoare, 1982)

Material Factor

Geotextile Pore size distribution (characteristic open-
ing size), porosity, thickness, fibre size

Soil Grain size and its distribution, porosity, 
permeability, cohesiveness

Soil + Geotextile External stress and strain
Water Hydraulic conditions

What is more, in order to experimentally evaluate 
the drainage performance of a geotextile incorporated 
with a soil, the test method employed should simulate 

the actual interaction between the geotextile and the 
soil. According to some of the previous s studies, for 
example Calhoun (1972), Haliburton and Wood (1982), 
it was proposed that the drainage performance of geo-
textiles be estimated by gradient ratio tests. Gradient 
ratio (GR) is defined as the hydraulic gradient through 
the lower 25 mm of the soil plus geotextile divided 
by the hydraulic gradient through the adjacent 50 mm 
of the soil, according the standard ASTM D5101-1 
(ASTM International [ASTM], 2012). Gradient ratio 
values exceeding 3.0, were believed to signify exces-
sive nonwoven geotextile clogging (Carroll, 1983; Gi-
roud, 2010; Fannin, 2015).

Apart from the gradient ratio, the number of con-
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mined. The constriction is a “window” delimited by 
three or more fibres, through which soil particles could 
migrate (Giroud, 1996; ASTM, 2016; Fig. 2).
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The number of constrictions “m” can be basically defined by the following equation 

(Giroud, 1996): 
𝑚𝑚 =  √1 − 𝑛𝑛GTX

𝑡𝑡GTX
𝑑𝑑𝑓𝑓

,          (1) 
where:  
nGTX – geotextile’s porosity,  
tGTX – geotextile thickness,  
df – fiber diameter. 
 

Porosity (n) is calculated from (Wayne & Koerner, 1993): 
𝑛𝑛GTX = 1 −  µGTX

𝜌𝜌GTX𝑡𝑡GTX
,          (2) 

where:  
µGTX – mass per unit area of geotextile,  
ρGTX – density of the geotextile. 
 

The optimal constriction numbers should range between 25 and 45 (Giroud, 1996). 
However the research scientists recommend conducting more tests to assess the significance 
of this parameter when comparing two products with different opening sizes. What is more 
the limit was set based on the filtration opening size, i.e. FOS = O100 (Fig. 3). Meanwhile, the 
geotextile filter criteria in Europe, according to the standard ISO 12956:2019 (International 
Organization for Standardization [ISO], 2019), should be based on characteristic opening 
size O90.  
 

 
Fig. 3. The relationship between O100/df and tGTX/df (Giroud, 1996) 

 

Fig. 2.	� Constriction between fibers (Giroud, 2010)

The number of constrictions “m” can be basically 
defined by the following equation (Giroud, 1996):

f

tm n
d

,	 (1)

where:
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The optimal constriction numbers should range 
between 25 and 45 (Giroud, 1996). However the re-
search scientists recommend conducting more tests to 
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(Giroud, 1996)

The main purpose of this study to analyse the in-
fluence of the number of constrictions on the filtra-
tion properties of nonwoven geotextiles. The research 
goal was (i) to determine the number of constrictions 
of three needle-punched nonwoven geotextiles and (ii) 
to perform gradient ratio tests.

MATERIAL AND METHODS

Nonwoven geotextiles
Two types of polypropylene needle-punched nonwo-
ven geotextile samples were analysed in gradient ratio 
tests and will be further referred to as A and B.

To calculate the number of constrictions the fibre 
diameters of tested samples were determined by the 

use of scanning electron microscope (SEM). The SEM 
images are presented in Figure 4.
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Fig. 4. The SEM images of nonwoven geotextile sample A (a) and sample B (b) 

 
The fibre diameters were determined based on the average value from fifty 

measurements. The mean values of fibre diameters were equal to 34.50 and 33.15 µm for 
samples A and B, respectively. The physical, hydraulic and mechanical properties of tested 
geotextiles are summarized in Table 2. 
 
Table 2. The main factors effecting on filter properties (Hoare, 1982) 
Properties Geotextile A Geotextile B 

Mass per unit area [g·m–2] 246 310 

Thickness under 2 kPa [mm] 1.34 1.62 

Porosity [%] 0.80 0.79 

Tensile strength – MDa [kN·m–1] 20 25 

Tensile strength – CMDb [kN·m–1] 20 25 

Elongation at maximum load – MD [%] 50 50 

Elongation at maximum load – CMD [%] 55 60 

Characteristic opening size O90 [mm] 0.070 0.065 

Water permeability coefficient [m·s–1] 0.00546 0.00476 

Number of constrictions [-] 17 22 
aMD – machine direction, bCMD – cross machine direction. 
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The fibre diameters were determined based on 
the average value from fifty measurements. The 
mean values of fibre diameters were equal to 34.50 
and 33.15 µm for samples A and B, respectively. The 
physical, hydraulic and mechanical properties of 
tested geotextiles are summarized in Table 2.
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Soil
According to ISO 14688-2 (ISO, 2017), the soil used 
in gradient ratio tests was classified as silty sand (siSa). 
For this material Table 3 presents the particle size 
dimensions. The soil was internally unstable (Kenney 
& Lau, 1985; Figs 4 and 5, and Table 4).

 

Soil 
According to ISO 14688-2 (ISO, 2017), the soil used in gradient ratio tests was classified as 
silty sand (siSa). For this material Table 3 presents the particle size dimensions. The soil was 
internally unstable (Kenney & Lau, 1985; Figs 4 and 5, and Table 4). 
 
Table 3. Particle size characteristics of tested silty sand 

Particle diameter Coefficient of uniformity (CU) 
d60/d10 

Coefficient of curvature (CC) 
d302/d60d10 d10a d30 d50 d60 

0.02 0.095 0.16 0.19 9.50 2.38 
adn – diameter for which n% in mass of the remaining soil particles are smaller than that diameter. 
 

 
Fig. 4. Particle size distribution curve of silty sand and the example of coordinates to construction of soil internal 

stability graphs according to Kenney and Lau (1985) 
 

 
Fig. 5. Internal stability of soil graph according to Kenney and Lau (1985) 
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(Fn; Hn) 
0.001 (F0; H0) = (0; 4) 
0.004 (F1; H1) = (4; 3.5) 
0.016 (F2; H2) = (7; 18) 
0.064 (F3; H3) = (25; 51) 
0.256 (F4; H4) = (76; 24) 
1.024 (F5; H5) = (100; 0) 

 
Gradient ratio test 
An ASTM D5101-12 gradient ratio test modified apparatus was used to perform the tests 
(ASTM, 2012). The additional piezometers (6 and 7) were installed to obtain additional 
pressure measurements in layer of soil situated close to nonwoven geotextile sample. Figure 6 
presents schematically the device used in the work. 

Fig. 4.	� Particle size distribution curve of silty sand and 
the example of coordinates to construction of soil 
internal stability graphs according to Kenney and 
Lau (1985)

 

Soil 
According to ISO 14688-2 (ISO, 2017), the soil used in gradient ratio tests was classified as 
silty sand (siSa). For this material Table 3 presents the particle size dimensions. The soil was 
internally unstable (Kenney & Lau, 1985; Figs 4 and 5, and Table 4). 
 
Table 3. Particle size characteristics of tested silty sand 

Particle diameter Coefficient of uniformity (CU) 
d60/d10 

Coefficient of curvature (CC) 
d302/d60d10 d10a d30 d50 d60 

0.02 0.095 0.16 0.19 9.50 2.38 
adn – diameter for which n% in mass of the remaining soil particles are smaller than that diameter. 
 

 
Fig. 4. Particle size distribution curve of silty sand and the example of coordinates to construction of soil internal 

stability graphs according to Kenney and Lau (1985) 
 

 
Fig. 5. Internal stability of soil graph according to Kenney and Lau (1985) 

 
Table 4. Point coordinates Fn and Hn in relation to soil particle diameters 
Particle diameter (d) 

[mm] 
Point coordinate 

(Fn; Hn) 
0.001 (F0; H0) = (0; 4) 
0.004 (F1; H1) = (4; 3.5) 
0.016 (F2; H2) = (7; 18) 
0.064 (F3; H3) = (25; 51) 
0.256 (F4; H4) = (76; 24) 
1.024 (F5; H5) = (100; 0) 

 
Gradient ratio test 
An ASTM D5101-12 gradient ratio test modified apparatus was used to perform the tests 
(ASTM, 2012). The additional piezometers (6 and 7) were installed to obtain additional 
pressure measurements in layer of soil situated close to nonwoven geotextile sample. Figure 6 
presents schematically the device used in the work. 

Fig. 5.	� Internal stability of soil graph according to Ken-
ney and Lau (1985)

Table 3.	� Particle size characteristics of tested silty sand
Particle diameter Coefficient 

of uniformity 
(CU)

d60/d10

Coefficient 
of curvature 

(CC)
d30

2/d60d10

d10
a d30 d50 d60

0.02 0.095 0.16 0.19 9.50 2.38
adn – �diameter for which n% in mass of the remaining soil par-

ticles are smaller than that diameter.

Table 4.	� Point coordinates Fn and Hn in relation to soil 
particle diameters

Particle diameter (d)
[mm]

Point coordinate
(Fn; Hn)

0.001 (F0; H0) = (0; 4)
0.004 (F1; H1) = (4; 3.5)
0.016 (F2; H2) = (7; 18)
0.064 (F3; H3) = (25; 51)
0.256 (F4; H4) = (76; 24)
1.024 (F5; H5) = (100; 0)

Gradient ratio test
An ASTM D5101-12 gradient ratio test modified appa-
ratus was used to perform the tests (ASTM, 2012). 
The additional piezometers (6 and 7) were installed 
to obtain additional pressure measurements in layer 
of soil situated close to nonwoven geotextile sample. 
Figure 6 presents schematically the device used in the 
work.

The tested soil was dried (under 105°C for 24 h) 
and sieved with mesh 2 mm. Then, the siSa sample 
was placed around the nonwoven geotextile material. 
The water was delivered into the apparatus from bot-
tom to the top slowly in the beginning for 24 h. After 
that, flow direction was changed. When the water flow 

Table 2.	� The main factors effecting on filter properties (Hoare, 1982)
Properties Geotextile A Geotextile B
Mass per unit area [g·m–2] 246 310
Thickness under 2 kPa [mm] 1.34 1.62
Porosity [%] 0.80 0.79
Tensile strength – MDa [kN·m–1] 20 25
Tensile strength – CMDb [kN·m–1] 20 25
Elongation at maximum load – MD [%] 50 50
Elongation at maximum load – CMD [%] 55 60
Characteristic opening size O90 [mm] 0.070 0.065
Water permeability coefficient [m·s–1] 0.00546 0.00476
Number of constrictions [-] 17 22

aMD – machine direction, bCMD – cross machine direction.
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reached a steady condition, volume of flow (V), time 
of flow (t), pressure of individual piezometer (Δh) and 
the temperature of water flow (T) were measured for 
each of the hydraulic gradients at 1.0, 2.5, 5.0, 7.5 and 
10.0. Two tests were performed for each type of non-
woven geotextile and one type of soil.
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Fig. 6. Scheme of gradient ratio test device (h1–h8 – piezometers) 
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geotextile between sixth and seventh piezometer), 

 zone 4.5–6 (17 mm layer of soil within the distance from 8 to 25 mm above nonwoven 
geotextile between fourth along with fifth piezometer and sixth piezometer), 

 zone 2.3–4.5 (50 mm layer of soil within the distance from 25 to 75 mm above 
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between fourth along with fifth piezometer and 
eighth piezometer);

-	 for soil:
�	zone 6–7 (4 mm layer of soil within the distance 

from 4 to 8 mm above nonwoven geotextile be-
tween sixth and seventh piezometer),

	zone 4.5–6 (17 mm layer of soil within the dis-
tance from 8 to 25 mm above nonwoven geotex-
tile between fourth along with fifth piezometer 
and sixth piezometer),

	zone 2.3–4.5 (50 mm layer of soil within the dis-
tance from 25 to 75 mm above nonwoven geo-
textile between second along with third piezo-
meter and fourth as well as fifth piezometer).

The gradient ratio (GR = GR25) in soil–geotextile 
system, was calculated from:

h LGR
h L

,	 (3)

where:
Δh4.5–8	 – �the difference manometer readings between 

average reading of fourth as well as fifth 
piezometer to eighth piezometer [mm],

Δh2.3–4.5	– �the distance in manometer readings between 
average reading of second as well as third 
piezometer and average reading of fourth as 
well as fifth piezometer [mm],

L4		  – �the distance between fourth piezometer and 
the bottom of geotextiles [mm],

L2–4	 	 – �the distance between second and fourth 
piezometer [mm].

In addition, the GR8 and GR4 were calculated 
according the following equations:

h LGR
h L

,	 (4)

h LGR
h L

,	 (5)

where:
Δh6–8	 – �the distance in manometer readings between 

reading of sixth and eighth piezometer [mm], 
Δh7–8	 – �the difference manometer readings between 

reading of seventh and eighth piezometer 
[mm].

RESULTS AND DISCUSSION

The gradient ratio test results are presented in Table 5. 
Ideal conditions would yield a uniform head loss 
through the soil sample, and a gradient ratio value of 
unity (GR25 = 1). Entrapment of fine particles within 
or on the nonwoven geotextile yields a zone of rela-
tively lower permeability and an increased head loss 
across the composite soil–geotextile filter zone. So the 
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clogging phenomenon causes the value of gradient-
ratio to exceed unity (Fannin, 2010). For tested sam-
ples, the GR25 did not exceed the limit of gradient ratio 
equal 3. The U.S. Army Corps of Engineers proposed 
a criterion GR25 < 3 to avoid any unacceptable clog-
ging, based on the findings of Haliburton and Wood 
(1982) from tests on silty sand samples with different 
silt content. The tested soil contains 24% of fine parti-
cles (silt and clay).

Table 5.	� The gradient ratio values at the end of test for 
hydraulic gradient at 10.0

Geotextile
Gradient ratio

GR25 GR8 GR4

A 2.96 3.86 4.92
B 2.42 2.86 3.75

However, GR4 > GR8 > GR25. It indicates that the 
significant clogging occurred in the 4-mm and 8-mm 
layer above the nonwoven geotextile. What is more, 
the gradient ratio values increases with time (Figs 7 
and 8) due to physical clogging. 
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Also Fannin et al. (1996) introduced an additional 
measurement location at Port 6, located only 8 mm 
above the geotextile, yielding a value of GR8 that is 
a more sensitive index to piping or clogging in the 
soil–geotextile composite zone. Test device were also 
modified by Palmeira and Matheus (2000). 

In the research conducted by Nishigata et al. (2000) 
the GR8 were determined too. The authors confirmed 
that GR8 > GR25 (Fig. 9) in tests with needle-punched 
nonwoven geotextile with mass per unit area 332 g·m–2. 
The fine contents for tested soil samples were the fol-
lowing: 18% (for soil 1), 25% (for soil 1-A) and 33% 
(for soil 1-B).
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What is more, the obtained results in this study 
show that nonwoven geotextile B with the number of 
constrictions of 22, can be used as the filtration layer 
for silty sand, as opposed to nonwoven geotextile A 
with the number of constrictions of 17. Therefore, the 
influence of the number of constrictions on the filtra-
tion properties of nonwoven geotextiles was confirmed. 
What is important, the minimal acceptable value of 
the number of constrictions should be 20 (not 25), 
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because the optimal range of the number of constric-
tions established in the literature varies between 25 and 
45 (Fig. 3) is mainly due to the include of O100 (not O90) 
when preparing the geotextile filter design criteria.

CONCLUSIONS

In conclusion the following comments appear relevant 
to the use of nonwoven geotextile filters in engineer-
ing applications:
-	 the internal stability of a granular soil and the prop-

erties of geotextiles are the key parameters in the 
design of a nonwoven geotextile filter;

-	gradient ratio test is necessary for the geotextile fil-
ters design in contact with unstable granular soils;

-	 the number of constrictions of nonwoven geotex-
tile should be determined to properly design of 
geotextile filter;

-	 the acceptable range of number of constrictions 
value should be defined with reference to charac-
teristic opening size O90;

-	 the authors recommend the minimal value of the 
number of constrictions equal to 20.
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Wpływ liczby przewężeń na właściwości filtracyjne geowłóknin 
igłowanych

STRESZCZENIE

Filtry z geowłóknin są powszechnie stosowane w konstrukcjach inżynierskich. Podstawowymi wymaganiami 
prawidłowego działania systemów drenażowych z wykorzystaniem geowłóknin są zdolność zatrzymywania 
cząstek, odpowiednia przepuszczalność oraz odporność na kolmatację. Najczęściej do oceny zachowania się 
układu grunt–geowłóknina wykorzystuje się badanie wskaźnika gradientów. Ponadto istotne jest wyznacza-
nie liczby przewężeń geowłóknin, która zależy od średnicy włókien, grubości geowłókniny i jej porowatości. 
Liczba przewężeń powinna być stosowana do rozróżniania właściwości filtracyjnych geowłóknin o takim 
samym lub podobnym wymiarze porów. W artykule przedstawiono badania wskaźnika gradientów dla gruntu 
wewnętrznie niestabilnego i geowłóknin o różnej strukturze. Wyniki badań wykazały znaczący wpływ liczby 
przewężeń geowłóknin na ich właściwości filtracyjne. W pracy zaproponowano także modyfikację kryterium 
odporności na kolmatację.

Słowa kluczowe: filtr geotekstylny, drenaż, kolmatacja, wskaźnik gradientów, przewężenia


