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aBsTracT

The paper analyses boundary effect behaviour in a building partition made of a two-component layered com-
posite. A two-dimensional model of such barrier has been adopted in which the boundary effect behaviour 
is described by a system of ODE’s. It has been proved that, for selected types of fluctuations, a hypothesis 
formulated in the end of the paper is true, i.e. a partition reacts for the presence of boundary package of fluc-
tuations consisting of one even and two odd fluctuations merely with a typical exponentially damped trans-
port of these boundary fluctuations. Their sinusoidal pulsations in the direction transversal to the periodicity 
directions are not possible. The exponential damping is maximal for components with very different material 
properties (values of parameters kII/kI and ηI close to zero). Such situations correspond to a characteristic peak 
of the graphs included in the paper.
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inTroducTion

Composite materials are often subjected to loads that cause boundary fluctuations in a temperature field and 
a displacement field. The case of boundary fluctuations in a displacement field concerns, for example, a situa-
tion when it is necessary to protect precise electronic devices against harmful ultrasounds. This protection may 
consist in placing such devices in rooms with composite walls. The effectiveness of this protection depends on 
the material properties of the composite. If it is a periodic composite, the best damping of displacement field 
disturbances is observed in the direction perpendicular to the composite periodicity. But a necessity of transmis-
sion of fluctuations does not always evoke a reaction of the composite in a form of boundary damping of these 
fluctuations. It may occur that the reaction is pulsatile. The same behaviour is observed in the problems of heat 
conduction. In this case, boundary fluctuations in the temperature field are most often caused by a spontaneous 
formation of a boundary layer in the area of the partition from the outside and inside of the room.

* The article is formatted in one-column layout due to complexity of the text.
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It can be assumed that the ambient temperature automatically adjusts to the heterogeneous structure of the 
composite, creating boundary fluctuations. The boundary fluctuations that arise in this way are usually extin-
guished inside the wall. In this case, a boundary effect occurs. However, the boundary fluctuations often pulsate. 
It is the aim of this work to investigate when they pulsate. We observe similar phenomena in the area cov-
ered by the earth’s tectonic plates (Chelidze et al., 2010a, 2010b; Ponomariew, Lockner, Stroganova, Stanchits  
& Smirnov, 2010).

Thermal boundary impulses of a temperature field will be treated as impulses superimposed on an average 
temperature in a region of a repeatable cell of a periodic composite − such attitude toward the pulses is an appli-
cation of the physical micro-macro hypothesis. This is the basic hypothesis of the so-called tolerance modelling 
(Woźniak & Wierzbicki, 2000) or rather its extension (Kula, Mazewska & Wierzbicki, 2012; Kula & Wierzbicki, 
2015) leading to an accurate description of the phenomena of heat conduction in composites.

The work is an attempt to use a detailed description of the thermal boundary effect behaviour described by 
Kula (2016). Considerations in this work, as already underlined, concern only the issues of heat conductivity.

The study is limited to the simplest behaviour of thermal conductivity using the Fourier’s law of thermal 
conductivity. The result of this choice is the use of the parabolic equation of thermal conductivity as a physical 
starting point for the work; precisely, the equivalent reformulation of the thermal conductivity equation for pe-
riodic composites, called the surface localization of this equation, will be used. Basing on such way of descrip-
tion of the phenomena of thermal conductivity, it has been stated in the paper that, during transport through the 
composite area, the periodic boundary fluctuations experience not only an intense exponential damping but also 
rotational damping – sinusoidal pulsations. The work is devoted to the analysis of these two types of damping. 
For the first time, the analysis of the boundary effect behaviour with use of the so-called Surface Localized Heat 
Transfer Equations was undertaken by Kula (2016). A similar issue, but concerning only a pair of Fourier fluc-
tuations (Wodzyński, Kula & Wierzbicki, 2018).

The aim of this work is a determination of the maximum damping coefficient of the mutually cooperating 
triplets of thermal Fourier fluctuations during their transport through a two-phase periodically layered partition.

The scope of the work is limited to the analysis of the role of a composite building partition as a protection of 
precise electrotechnical devices against harmful disturbances caused by external physical fields. Such partition 
is designed to act as a filter for such disturbances.

The subject of the study is the analysis of the type of a reaction of a conductor to the transport of a package 
(set) of such fluctuations through the area occupied by this conductor (partition). The conductor reacts to the 
transport of such a package either by an extinguishing (damping) it or by making the transmitted fluctuations 
oscillate across the conducting partition. These oscillations can be very damaging both to the partition and for 
devices located in a room surrounded by such partition.

The aforementioned analysis of the conductor’s reaction type is formalized in this paper to an analysis of 
the appropriate Cauchy problem for a system of ordinary differential equations of the second order, which is  
a mathematical description of the boundary effect behaviour.

surface localiZaTion of heaT conducTion in composiTe media

heat conduction in periodic composites
The starting point of considerations in this work is the parabolic equation of heat conduction in a form

  (1)

which describes the heat conduction in a composite partition occupying an area Ω ⊂ RD, 2 ≤ D ≤ 3, specified as 
a Carthesian product
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Ω = Ωd ∙ ΩD – d  (2)

where Ωd ⊂ Rd and Ωd ⊂ RD – d, moreover: 

1o Ωd = (0, L), ΩD – d = (0, δ1) × (0, δ2) if (d, D) = (1, 3), 

2o Ωd = (0, L1) × (0, L2), ΩD – d = (0, δ) if (d, D) = (2, 3), 

3o Ωd = (0, L), ΩD – d = (0, δ) if (d, D) = (1, 2),

for L1, L2, L, δ1, δ2, δ > 0. In Eq. (1):

- θ = θ(y, z, t), y ∈ Ωd ⊂ Rd, z ∈ ΩD – d ⊂ RD – d, t ≥ 0, denotes a temperature field,

- c denotes a specific heat field,

- k denotes a conductive matrix field.

Moreover, 

which describes the heat conduction in a composite partition occupying an area 
RD, 2 D  3, specified as a Carthesian product 

 = d · D – d      (2) 

where d Rd and d RD – d, moreover:  

1o
d = (0, L), D – d = (0, 1) × (0, 2) if (d, D) = (1, 3),

2o
d = (0, L1) × (0, L2), D – d = (0, ) if (d, D) = (2, 3),

3o
d = (0, L), D – d = (0, ) if (d, D) = (1, 2), 

for L1, L2, L, 1, 2,  > 0. In Eq. (1): 

-  = (y, z, t), y d Rd, z D – d RD – d, t  0, denotes a temperature field, 

- c denotes a specific heat field, 

- k denotes a conductive matrix field. 

Moreover, for with the last D – d

terms equal to zero, as well as with the first d

terms equal to zero. Both these fields c = c(·) and k = k(·) are functions independent on 

the temperature field and determined everywhere in d apart of the places (lines or 

points, depending on the value of d = 1 or 2) separating components of the composite 

and assuming S values equal to c1, …, cS and k1, …, kS, respectively, in the areas 

occupied by these components. It has been also assumed that the aforementioned 

functions were obtained in a way that certain periodic scalar fields determined almost 

everywhere in the whole space Rd were restricted to the area d. If the space Rd in 

Eq. (2) is interpreted as a space of directions of periodicity and RD d as a space of 

directions perpendicular to the directions of periodicity, then one can acknowledge 

that Eq. (1) can be interpreted as an equation describing the heat conduction behaviour 

in the area occupied by a periodic composite whose periodicity is determined by a 

repeatable cell  thus one deals with a -periodic composite. A diameter diam( ) of 

this repeatable cell must not be small with relation to a characteristic linear size L of 

the area  occupied by the composite. It can be assumed that the equations used in this 

work will be controlled by a dimensionless scale parameter  = diam( )/L, because 

these equations will depend on this scale parameter. -periodicity of the composite 

means that it exists a -tuple (v1, …, vd) (a series of lengths ) of linearly independent 

vectors v1, …, vd Rd determining d directions of periodicity and having the 

properties: (i) points x + k1v1 + … + kdvd, 0.5 < k1, kd < 0.5, cover the whole inside of 

the cell (x) = x + , x RD (ii)  = (x0) for a fixed x0 R3, (iii) c(x + v) = c(x),
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occupied by these components. It has been also assumed that the aforementioned 

functions were obtained in a way that certain periodic scalar fields determined almost 

everywhere in the whole space Rd were restricted to the area d. If the space Rd in 

Eq. (2) is interpreted as a space of directions of periodicity and RD d as a space of 

directions perpendicular to the directions of periodicity, then one can acknowledge 

that Eq. (1) can be interpreted as an equation describing the heat conduction behaviour 

in the area occupied by a periodic composite whose periodicity is determined by a 

repeatable cell  thus one deals with a -periodic composite. A diameter diam( ) of 

this repeatable cell must not be small with relation to a characteristic linear size L of 

the area  occupied by the composite. It can be assumed that the equations used in this 

work will be controlled by a dimensionless scale parameter  = diam( )/L, because 

these equations will depend on this scale parameter. -periodicity of the composite 

means that it exists a -tuple (v1, …, vd) (a series of lengths ) of linearly independent 

vectors v1, …, vd Rd determining d directions of periodicity and having the 

properties: (i) points x + k1v1 + … + kdvd, 0.5 < k1, kd < 0.5, cover the whole inside of 

the cell (x) = x + , x RD (ii)  = (x0) for a fixed x0 R3, (iii) c(x + v) = c(x),

 with the first d terms equal to zero. Both these fields c = c(∙) 
and k = k(∙) are functions independent on the temperature field and determined everywhere in Ωd apart of the 
places (lines or points, depending on the value of d = 1 or 2) separating components of the composite and as-
suming S values equal to c1, …, cS and k1, …, kS, respectively, in the areas occupied by these components. It 
has been also assumed that the aforementioned functions were obtained in a way that certain periodic scalar 
fields determined almost everywhere in the whole space Rd were restricted to the area Ωd. If the space Rd in 
Eq. (2) is interpreted as a space of directions of periodicity and RD−d as a space of directions perpendicular 
to the directions of periodicity, then one can acknowledge that Eq. (1) can be interpreted as an equation 
describing the heat conduction behaviour in the area occupied by a periodic composite whose periodicity 
is determined by a repeatable cell ∆ − thus one deals with a ∆-periodic composite. A diameter diam(∆) of 
this repeatable cell must not be small with relation to a characteristic linear size L of the area Ω occupied 
by the composite. It can be assumed that the equations used in this work will be controlled by a dimen-
sionless scale parameter λ = diam(∆)/L, because these equations will depend on this scale parameter. ∆-pe-
riodicity of the composite means that it exists a σ-tuple (v1, …, vd) (a series of lengths σ) of linearly inde-
pendent vectors v1, …, vd  ∈ Rd determining d directions of periodicity and having the properties: (i) points  
x + k1v1 + … + kdvd, −0.5 < k1, kd < 0.5, cover the whole inside of the cell Δ(x) = x + Δ, x ∈ RD (ii) Δ = Δ(x0) 
for a fixed x0 ∈ R3, (iii) c(x + v) = c(x), K(x + v) = K(x) for every v ∈ {v1, …, vd}, x ∈ RD. In this way,  
a ∆-periodic structure has been introduced into the whole space RD. Hence, a ∆-periodic net Γ of surfaces 
separating the composite components exists in the whole space RD. An averaging 〈 f 〉(x), x ≡ (y, z), of an  
integrable function f is understood in the whole work as an integration averaging:

  (3)

and it is independent on x if f is a ∆-periodic function. 
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decomposition of the temperature field into long-wave and short-wave part
According to the methodology of surface localization, introduce an ε-neighbourhood (an ε-band)

 

Decomposition of the temperature field into long-wave and short-wave part 

According to the methodology of surface localization, introduce an -neighbourhood 
(an -band) 

( ) { : ( , ) }Do x R dist x         (4) 

of a -periodic net of surfaces separating the composite components. Distinguish a 
long-wave temperature field L(z) which can be represented in a form: 

   (5) 
differentiable for z  oε(Γ)\Γ and for appropriately chosen right side of Eq. (4), for 
which a normal component of heat flux disappears on : 

(𝑞𝑞𝑆𝑆)𝑛𝑛 ≡ 𝑘𝑘(∇𝜃𝜃𝑆𝑆)𝑛𝑛 = 0   (6) 

Moreover, distinguish a short-wave temperature field S which is differentiable 
any number of times and whose carrier  supp(θS) = {x  RD : θL(x) ≠ 0} is localized 
beyond the -band oε(Γ), i.e. supp(θS) ∩ oε(Γ) = Ø. The basis of these considerations is 
a possibility of a decomposition of the temperature field, proved in Kula (2015) and 
presented further. 
 
Micro-macro-decomposition of temperature field 
The temperature field  in a periodic composite can be presented as a sum 

𝜃𝜃 ≡ 𝜃𝜃𝐿𝐿 + 𝜃𝜃𝑆𝑆  (7) 

of a long-wave part L and short-wave part S of the temperature field. In Kula (2015) 
it was referred to as the LS-decomposition of temperature field. 

The regularity of the field S allows for a representation of this field in a form 

𝜃𝜃𝑆𝑆(𝑦𝑦, 𝑧𝑧, 𝑡𝑡) ≡ 𝜃𝜃(𝑦𝑦, 𝑧𝑧, 𝑡𝑡) − 𝜃𝜃𝐿𝐿(𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =𝑎𝑎𝑝𝑝(𝑧𝑧, 𝑡𝑡)𝜑𝜑𝑝𝑝(𝑦𝑦, 𝑧𝑧)   (8) 

as a development of the field S in a Fourier series with respect to any appropriately 
chosen, orthogonal base p(y, z), independent on thermal and material properties of the 
composite. Moreover, in Eq. (8), the summation convention holds with respect to an 
integral positive superscript p. If one additionally assumes that the temperature 

( , )y z       averaged in the field of repeatable cells  = (y) is independent on the 
variable y  Rd , i.e. ( )z      , then a limit transition   0 allows to derive model 
equations of heat conduction which are satisfied in : 

〈𝑐𝑐〉�̇�𝑢 − ∇𝑇𝑇(⟨𝑘𝑘⟩∇𝑢𝑢 + [𝑘𝑘]𝑝𝑝𝑎𝑎𝑝𝑝) = −〈𝑏𝑏〉
𝜆𝜆2(〈𝑝𝑝𝑐𝑐𝑞𝑞〉�̇�𝑎𝑞𝑞 − ∇𝑧𝑧

𝑇𝑇〈𝑝𝑝𝑐𝑐𝑞𝑞〉∇𝑧𝑧𝑎𝑎𝑞𝑞) +
 +2𝜆𝜆𝑠𝑠𝑝𝑝𝑞𝑞∇𝑧𝑧𝑎𝑎𝑞𝑞 + {𝑘𝑘}𝑝𝑝𝑞𝑞𝑎𝑎𝑝𝑝 = 〈𝑝𝑝𝑏𝑏〉 − ([𝑘𝑘]𝑇𝑇)𝑝𝑝∇𝑧𝑧𝑢𝑢

                    
 (9)

 

for \z   and 

     
〈𝑐𝑐〉�̇�𝑢 − ∇𝑇𝑇(⟨𝑘𝑘⟩∇𝑢𝑢 + 〈𝑘𝑘∇𝑇𝑇ℎ𝐴𝐴〉𝐴𝐴) = −〈𝑏𝑏〉
 〈∇𝑧𝑧

𝑇𝑇ℎ𝐴𝐴𝑘𝑘∇𝑧𝑧ℎ𝐵𝐵〉𝐵𝐵 + 〈∇𝑇𝑇ℎ𝐴𝐴𝑘𝑘〉∇𝑧𝑧𝑢𝑢 = 0                 
 (10)

 

For z  Γ. In Eqs. (9) and (10) A, B = 1, 2, …, N, p, q = 1, 2, … , (Wodzyński, 
Kula & Wierzbicki, 2018), and the unknown functions are: 
- a field of the average temperature  ( )z       

( ) ( ) ( ) for ( )
( )

0 for ( )L

z h x z z o
z

z o




 


  
   

  (4)

of a ∆-periodic net of surfaces separating the composite components. Distinguish a long-wave temperature field 
θL(z) which can be represented in a form:

  (5)

differentiable for z ∈ oε(Γ)\Γ and for appropriately chosen right side of Eq. (4), for which a normal component 
of heat flux disappears on Γ:

   (6)

Moreover, distinguish a short-wave temperature field θS which is differentiable any number of times and 
whose carrier  supp(θS) = {x ∈ RD : θL(x) ≠ 0} is localized beyond the ε-band oε(Γ), i.e. supp(θS) ∩ oε(Γ) = Ø. 
The basis of these considerations is a possibility of a decomposition of the temperature field, proved in Kula 
(2015) and presented further.

micro-macro-decomposition of temperature field
The temperature field θ in a periodic composite can be presented as a sum

   (7)

of a long-wave part θL and short-wave part θS of the temperature field. In Kula (2015) it was referred to as the 
LS-decomposition of temperature field.

The regularity of the field θS allows for a representation of this field in a form

   (8)

as a development of the field θS in a Fourier series with respect to any appropriately chosen, orthogonal base 
ϕp(y, z), independent on thermal and material properties of the composite. Moreover, in Eq. (8), the summation 
convention holds with respect to an integral positive superscript p. If one additionally assumes that the tempera-
ture 〈θ 〉 = 〈θ 〉(y, z)  averaged in the field of repeatable cells ∆ = ∆(y) is independent on the variable y ∈ Rd , 
i.e. 〈θ 〉 = 〈θ 〉(z), then a limit transition ε → 0 allows to derive model equations of heat conduction which are 
satisfied in Ω:
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For z ∈ Γ. In Eqs. (9) and (10) A, B = 1, 2, …, N, p, q = 1, 2, … , (Wodzyński, Kula & Wierzbicki, 2018), and 
the unknown functions are:
-	a field of the average temperature 〈θ 〉 = 〈θ 〉(z) 
-	a field of amplitudes of Fourier fluctuations, ap = ap(z),
-	a field of amplitudes of Woźniak fluctuations, Ψp = Ψp (z).

In Eq. (9), following denotations have been assumed:

 

- a field of amplitudes of Fourier fluctuations,  ( )p pa a z , 
- a field of amplitudes of Woźniak fluctuations, ( )p p z   

In Eq. (9), following denotations have been assumed: 

([𝑘𝑘]𝑇𝑇)𝑝𝑝 = 〈𝑘𝑘∇𝑇𝑇𝑝𝑝〉, [𝑘𝑘]𝑝𝑝 = 〈𝑘𝑘∇𝑇𝑇𝑝𝑝〉
2𝑠𝑠𝑝𝑝𝑝𝑝 = 〈∇𝑦𝑦

𝑇𝑇𝑝𝑝𝑘𝑘𝑝𝑝〉 − 〈∇𝑇𝑇𝑝𝑝𝑘𝑘𝑝𝑝〉
 {𝑘𝑘}𝑝𝑝𝑝𝑝 = 〈∇𝑦𝑦

𝑇𝑇𝑝𝑝𝑘𝑘∇𝑝𝑝〉
 

      (11) 
Formulas in (10) are satisfied in Γ, thus they are not used in the analysis of the 

boundary effect. 
The exact derivation we can found in the previous works of the authors (Kula, 

2016; Wodzyński, Kula & Wierzbicki, 2018). 
 
Composite behaviour of boundary effect 
In the theory of ODE’s, it is sometimes preferred a method of their solving by seeking 
solutions in a form of a sum of general integral of homogeneous equation and 
particular integral of non-homogeneous equation. The homogeneous part  

𝜆𝜆2(〈𝑝𝑝𝑐𝑐𝑝𝑝〉�̇�𝑎𝑝𝑝 − ∇𝑧𝑧
𝑇𝑇〈𝑝𝑝𝑐𝑐𝑝𝑝〉∇𝑧𝑧𝑎𝑎𝑝𝑝) + 2𝜆𝜆𝑠𝑠𝑝𝑝𝑝𝑝∇𝑧𝑧𝑎𝑎𝑝𝑝 + {𝑘𝑘}𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 = 0 (12)

  
 

of the second equation of the set (9) is exactly the same which is treated as a model of 
the composite behaviour of boundary effect serving as a description of transfer of 
boundary loads by the composite. In this work, they are thermal loads. 
 
BOUNDARY EFFECT BEHAVIOUR EVOKED BY A TRIPLET OF FOURIER 
FLUCTUATIONS 
Mathematical model of boundary effect behaviour 
The Fourier base will be built in this work of: 
- odd Fourier fluctuations (with an integral frequency v2) 

   (13) 
- even asymmetric Fourier fluctuations (with an integral frequency v1) 
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- even symmetric Fourier fluctuations (with an integral frequency v1) 

    (15) 
The names of the fluctuations  even or odd  are determined by the 

coefficients: even 21 and odd 22  1, respectively Eqs. (13), (14) and (15). If infinite 
column vectors of fluctuation amplitudes 
f1(v1 = 1, y), f1(v1 = 2, y), …, f2(v2 = 1, y), f1(v2 = 2, y), … , f3(v1 = 1, y), f1(v1 = 2, y), … 
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-	 even asymmetric Fourier fluctuations (with an integral frequency v1)

 

- a field of amplitudes of Fourier fluctuations,  ( )p pa a z , 
- a field of amplitudes of Woźniak fluctuations, ( )p p z   

In Eq. (9), following denotations have been assumed: 
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      (11) 
Formulas in (10) are satisfied in Γ, thus they are not used in the analysis of the 

boundary effect. 
The exact derivation we can found in the previous works of the authors (Kula, 

2016; Wodzyński, Kula & Wierzbicki, 2018). 
 
Composite behaviour of boundary effect 
In the theory of ODE’s, it is sometimes preferred a method of their solving by seeking 
solutions in a form of a sum of general integral of homogeneous equation and 
particular integral of non-homogeneous equation. The homogeneous part  
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of the second equation of the set (9) is exactly the same which is treated as a model of 
the composite behaviour of boundary effect serving as a description of transfer of 
boundary loads by the composite. In this work, they are thermal loads. 
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-	 even symmetric Fourier fluctuations (with an integral frequency v1)
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The names of the fluctuations − even or odd − are determined by the coefficients: even 2ν1 and odd 2ν2 − 1, 
respectively Eqs. (13), (14) and (15). If infinite column vectors of fluctuation amplitudes

f1(v1 = 1, y), f1(v1 = 2, y), …, f2(v2 = 1, y), f1(v2 = 2, y), … , f3(v1 = 1, y), f1(v1 = 2, y), …

are denoted by

b1 = b1(z) = [b1
(1)(z), b1

(2)(z), ...]T, a1 = a2(z) = [a2
(1)(z), a2

(2)(z), ...]T, b3 = b3(z) = [b3
(1)(z), b3

(2)(z), ...]T, 

respectively, then Eq. (12) of the boundary effect behaviour can be rewritten in a form
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In the above, new form (16) of the boundary effect behaviour model, the 
coefficients are square diagonal matrices of infinite dimension: 
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then the equation set of the boundary effect evoked by triplet of Fourier fluctuations – the odd with the amplitude 
b3, the asymmetric even with the amplitude a2 and the symmetric even with the amplitude a3 – can be written as 
a set of three ODE’s:
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This set contains the differential equations of the second order and has very 
interesting mathematical properties determined by its construction. The first and third 
equations contain components with a first derivative related exclusively to the 
amplitude a2 of the even fluctuation (shortly – even amplitude), whereas it does not 
contain components with a first derivative related to the amplitudes of the odd 
fluctuation b1 and  b3 (shortly – odd amplitudes). From the point of view of the 
simplest method of solving such set – the method of substitution – it means a 
possibility of reduction of this set to: 
- 1 a single 4th order ODE for the even amplitude a2, and two 2nd order ODE’s: for 

the odd amplitude b1 and for the odd amplitude b3, both of them controlled by the 
even amplitude a2; 

- 2 two single 8th order ODE’s for each of the odd amplitudes b1 and b3, and one 
2nd order ODE for the even amplitude a2, controlled by the odd amplitudes b1 and 
b3. 

 
Procedure 1: The second equation in the set (19) can be reduced (without its 
differentiation and with use of the information contained in the remaining two 
equations) to a 4th order equation for the amplitude a2: 
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This set contains the differential equations of the second order and has very interesting mathematical prop-
erties determined by its construction. The first and third equations contain components with a first derivative 
related exclusively to the amplitude a2 of the even fluctuation (shortly – even amplitude), whereas it does not 
contain components with a first derivative related to the amplitudes of the odd fluctuation b1 and b3 (shortly 
– odd amplitudes). From the point of view of the simplest method of solving such set – the method of substitution 
– it means a possibility of reduction of this set to:
-	1° a single 4th order ODE for the even amplitude a2, and two 2nd order ODE’s: for the odd amplitude b1 and 

for the odd amplitude b3, both of them controlled by the even amplitude a2;
-	2° two single 8th order ODE’s for each of the odd amplitudes b1 and b3, and one 2nd order ODE for the even 

amplitude a2, controlled by the odd amplitudes b1 and b3.
Procedure 1°: The second equation in the set (19) can be reduced (without its differentiation and with use of 

the information contained in the remaining two equations) to a 4th order equation for the amplitude a2:
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2nd order ODE for the even amplitude a2, controlled by the odd amplitudes b1 and 
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differentiation and with use of the information contained in the remaining two 
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Hence, the set (19) with the transformed second equation and unchanged first and third equations assumes  
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This set contains the differential equations of the second order and has very 
interesting mathematical properties determined by its construction. The first and third 
equations contain components with a first derivative related exclusively to the 
amplitude a2 of the even fluctuation (shortly – even amplitude), whereas it does not 
contain components with a first derivative related to the amplitudes of the odd 
fluctuation b1 and  b3 (shortly – odd amplitudes). From the point of view of the 
simplest method of solving such set – the method of substitution – it means a 
possibility of reduction of this set to: 
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even amplitude a2; 
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2nd order ODE for the even amplitude a2, controlled by the odd amplitudes b1 and 
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Procedure 2°: The subset consisting of the first and third equations in the set (19) (like the second equation 
in the Procedure 1°) can be replaced (without their double side differentiation and with use of the information 
contained in the remaining second equation) by a set of equations for the odd amplitudes b1 and b3, independent 
on the even amplitude a2. Further are presented subsequent stages of the discussed procedure.
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Thus, the set (19) with the transformed first and third equations and unchanged 
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(26) 

One of the equations in the set (26) for the odd amplitudes b1 and b3 – here the 
first one has been chosen – can be changed into a single 6th order equation, 
independent on the second of these two equations, for the amplitude b1. A double side 
differentiation of this chosen equation is not necessary and the second of these two 
equations can be use in this purpose:  

 
(27) 

The first of these equations, denoted as 1 1
2 21 12( ) ( )ii i      , will not be 

analysed in this work, hence it will be no longer simplified. Nevertheless, it must be 
emphasized that this equation is proportional to 2 – it can be divided by 2. 

The sets (21), (26) and (27) are a base for controlling the boundary effect with 
use of boundary conditions. 
 
Special cases. Controlling boundary conditions 
Boundary effect evoked by a doublet of Fourier fluctuations and a single Fourier 
fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude b1 over the whole partition width, e.g. 

 (28) 
one obtains a reduced form of the set (27): 

   (29) 
describing the boundary effect behaviour where the odd fluctuation with the amplitude 
b1 is not transferred across the partition and the transfer of the odd fluctuation with the 
amplitude b3 cooperating with the even fluctuation with the amplitude b2 is described 
by the set (29). 
 
Boundary effect evoked by a single Fourier fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude a2 over the whole partition width, e.g. 
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One of the equations in the set (26) for the odd amplitudes b1 and b3 – here the first one has been chosen – can 
be changed into a single 6th order equation, independent on the second of these two equations, for the amplitude 
b1. A double side differentiation of this chosen equation is not necessary and the second of these two equations 
can be use in this purpose: 

 

 
(26) 

One of the equations in the set (26) for the odd amplitudes b1 and b3 – here the 
first one has been chosen – can be changed into a single 6th order equation, 
independent on the second of these two equations, for the amplitude b1. A double side 
differentiation of this chosen equation is not necessary and the second of these two 
equations can be use in this purpose:  

 
(27) 

The first of these equations, denoted as 1 1
2 21 12( ) ( )ii i      , will not be 

analysed in this work, hence it will be no longer simplified. Nevertheless, it must be 
emphasized that this equation is proportional to 2 – it can be divided by 2. 

The sets (21), (26) and (27) are a base for controlling the boundary effect with 
use of boundary conditions. 
 
Special cases. Controlling boundary conditions 
Boundary effect evoked by a doublet of Fourier fluctuations and a single Fourier 
fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude b1 over the whole partition width, e.g. 

 (28) 
one obtains a reduced form of the set (27): 

   (29) 
describing the boundary effect behaviour where the odd fluctuation with the amplitude 
b1 is not transferred across the partition and the transfer of the odd fluctuation with the 
amplitude b3 cooperating with the even fluctuation with the amplitude b2 is described 
by the set (29). 
 
Boundary effect evoked by a single Fourier fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude a2 over the whole partition width, e.g. 
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The first of these equations, denoted as 1 1
2 21 12( ) ( )ii ia a b b− − ⋅ , will not be analysed in this work, hence it 

will be no longer simplified. Nevertheless, it must be emphasized that this equation is proportional to λ2 – it can 
be divided by λ2.

The sets (21), (26) and (27) are a base for controlling the boundary effect with use of boundary conditions.

special cases. controlling boundary conditions

Boundary effect evoked by a doublet of Fourier fluctuations and a single Fourier fluctuation

Including in the set (27) the boundary conditions resulting in the disappearance of the amplitude b1 over the 
whole partition width, e.g.

 

 
(26) 

One of the equations in the set (26) for the odd amplitudes b1 and b3 – here the 
first one has been chosen – can be changed into a single 6th order equation, 
independent on the second of these two equations, for the amplitude b1. A double side 
differentiation of this chosen equation is not necessary and the second of these two 
equations can be use in this purpose:  

 
(27) 

The first of these equations, denoted as 1 1
2 21 12( ) ( )ii i      , will not be 

analysed in this work, hence it will be no longer simplified. Nevertheless, it must be 
emphasized that this equation is proportional to 2 – it can be divided by 2. 

The sets (21), (26) and (27) are a base for controlling the boundary effect with 
use of boundary conditions. 
 
Special cases. Controlling boundary conditions 
Boundary effect evoked by a doublet of Fourier fluctuations and a single Fourier 
fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude b1 over the whole partition width, e.g. 

 (28) 
one obtains a reduced form of the set (27): 

   (29) 
describing the boundary effect behaviour where the odd fluctuation with the amplitude 
b1 is not transferred across the partition and the transfer of the odd fluctuation with the 
amplitude b3 cooperating with the even fluctuation with the amplitude b2 is described 
by the set (29). 
 
Boundary effect evoked by a single Fourier fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude a2 over the whole partition width, e.g. 
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one obtains a reduced form of the set (27):

 

 
(26) 

One of the equations in the set (26) for the odd amplitudes b1 and b3 – here the 
first one has been chosen – can be changed into a single 6th order equation, 
independent on the second of these two equations, for the amplitude b1. A double side 
differentiation of this chosen equation is not necessary and the second of these two 
equations can be use in this purpose:  

 
(27) 

The first of these equations, denoted as 1 1
2 21 12( ) ( )ii i      , will not be 

analysed in this work, hence it will be no longer simplified. Nevertheless, it must be 
emphasized that this equation is proportional to 2 – it can be divided by 2. 

The sets (21), (26) and (27) are a base for controlling the boundary effect with 
use of boundary conditions. 
 
Special cases. Controlling boundary conditions 
Boundary effect evoked by a doublet of Fourier fluctuations and a single Fourier 
fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude b1 over the whole partition width, e.g. 

 (28) 
one obtains a reduced form of the set (27): 

   (29) 
describing the boundary effect behaviour where the odd fluctuation with the amplitude 
b1 is not transferred across the partition and the transfer of the odd fluctuation with the 
amplitude b3 cooperating with the even fluctuation with the amplitude b2 is described 
by the set (29). 
 
Boundary effect evoked by a single Fourier fluctuation 
Including in the set (27) the boundary conditions resulting in the disappearance of the 
amplitude a2 over the whole partition width, e.g. 
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describing the boundary effect behaviour where the odd fluctuation with the amplitude b1 is not transferred across 
the partition and the transfer of the odd fluctuation with the amplitude b3 cooperating with the even fluctuation 
with the amplitude b2 is described by the set (29).

Boundary effect evoked by a single Fourier fluctuation

Including in the set (27) the boundary conditions resulting in the disappearance of the amplitude a2 over the 
whole partition width, e.g.
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(31) 
describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 
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(cf. Kula, 2016). 
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The subject of the analysis in this section is a single 4th order ODE 
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obtained from the last, leading equation of the set (14) by double-sided division of this 
equation by 4. Calculation of the even amplitude a2 from Eq. (7) and the odd 
amplitudes b1 and b3 from Eq. (5) leads to the solution of the set (4). The exact 
derivation we can found in the previous works of the authors (Wodzyński, Kula & 
Wierzbicki, 2018). 
It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
b1 and b3. Boundary conditions for these amplitudes are formulated in the next 
subsection. 
 
Boundary conditions (uniqueness conditions) 
The boundary conditions for the even amplitude a2 can be assumed in a form: 
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and for the odd amplitudes b1 and b3, taking (5) into consideration, in a form: 
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(31) 
describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 
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(cf. Kula, 2016). 
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obtained from the last, leading equation of the set (14) by double-sided division of this 
equation by 4. Calculation of the even amplitude a2 from Eq. (7) and the odd 
amplitudes b1 and b3 from Eq. (5) leads to the solution of the set (4). The exact 
derivation we can found in the previous works of the authors (Wodzyński, Kula & 
Wierzbicki, 2018). 
It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
b1 and b3. Boundary conditions for these amplitudes are formulated in the next 
subsection. 
 
Boundary conditions (uniqueness conditions) 
The boundary conditions for the even amplitude a2 can be assumed in a form: 

    (34) 
and for the odd amplitudes b1 and b3, taking (5) into consideration, in a form: 
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describing the boundary effect behaviour where the even fluctuation with the amplitude a2 is not transferred 
across the partition and the independent transfer of the odd fluctuations with the amplitudes b1 and b3 is described 
by the set (20).

Solution of the set (24), assuming the values b1(z = 0) and b1(z = δ) at the external and internal sides of the 
partition, can be written in the form:
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describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
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(cf. Kula, 2016). 
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obtained from the last, leading equation of the set (14) by double-sided division of this 
equation by 4. Calculation of the even amplitude a2 from Eq. (7) and the odd 
amplitudes b1 and b3 from Eq. (5) leads to the solution of the set (4). The exact 
derivation we can found in the previous works of the authors (Wodzyński, Kula & 
Wierzbicki, 2018). 
It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
b1 and b3. Boundary conditions for these amplitudes are formulated in the next 
subsection. 
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(cf. Kula, 2016).
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(31) 
describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 

1 1 1

sinh sinh
( ) ( 0) ( )

sinh sinh

z z

b z b z b z

 
    
 


 

      


  (32) 

(cf. Kula, 2016). 
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obtained from the last, leading equation of the set (14) by double-sided division of this 
equation by 4. Calculation of the even amplitude a2 from Eq. (7) and the odd 
amplitudes b1 and b3 from Eq. (5) leads to the solution of the set (4). The exact 
derivation we can found in the previous works of the authors (Wodzyński, Kula & 
Wierzbicki, 2018). 
It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
b1 and b3. Boundary conditions for these amplitudes are formulated in the next 
subsection. 
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obtained from the last, leading equation of the set (14) by double-sided division of this equation by λ4. Calcula-
tion of the even amplitude a2 from Eq. (7) and the odd amplitudes b1 and b3 from Eq. (5) leads to the solu-
tion of the set (4). The exact derivation we can found in the previous works of the authors (Wodzyński, Kula  
& Wierzbicki, 2018).
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It must be emphasized that the way of solving the problem (here: the method of substitution) results in a way 
of imposing conditions of uniqueness, in this case for a2, b1 and b3. Boundary conditions for these amplitudes 
are formulated in the next subsection.

Boundary conditions (uniqueness conditions)
The boundary conditions for the even amplitude a2 can be assumed in a form:

 

  (30) 
one obtains a reduced form of the set (27): 

1 1

3 3

21 23 2

: " 0
: " 0

( ) : 0

I b b
III b b
II I III II a

 
 
 

 
  

 

     

(31) 
describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 
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(cf. Kula, 2016). 
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It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
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subsection. 
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As β21 = – β21 and β23 = – β32, then β21β12 + β23β32 = –(β21
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β21β12 + β23β32 = –β2 for some β ≠ 0. Present Eq. (7) in a form: 
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and for the odd amplitudes b1 and b3, taking (5) into consideration, in a form:
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(31) 
describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 
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solution form
As β21 = – β21 and β23 = – β32, then β21β12 + β23β32 = –(β21

2β23
2) < 0 and finally β21β12 + β23β32 = –β2 for some 

β ≠ 0. Present Eq. (7) in a form:
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describing the boundary effect behaviour where the even fluctuation with the 
amplitude a2 is not transferred across the partition and the independent transfer of the 
odd fluctuations with the amplitudes b1 and b3 is described by the set (20). 

Solution of the set (24), assuming the values b1(z = 0) and b1(z = ) at the 
external and internal sides of the partition, can be written in the form: 
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(cf. Kula, 2016). 
 
ANALYSIS 
Reduction of the model form to a 4th order ODE’s 
The subject of the analysis in this section is a single 4th order ODE 
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obtained from the last, leading equation of the set (14) by double-sided division of this 
equation by 4. Calculation of the even amplitude a2 from Eq. (7) and the odd 
amplitudes b1 and b3 from Eq. (5) leads to the solution of the set (4). The exact 
derivation we can found in the previous works of the authors (Wodzyński, Kula & 
Wierzbicki, 2018). 
It must be emphasized that the way of solving the problem (here: the method of 
substitution) results in a way of imposing conditions of uniqueness, in this case for a2, 
b1 and b3. Boundary conditions for these amplitudes are formulated in the next 
subsection. 
 
Boundary conditions (uniqueness conditions) 
The boundary conditions for the even amplitude a2 can be assumed in a form: 
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and for the odd amplitudes b1 and b3, taking (5) into consideration, in a form: 
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free from the scale effect. The characteristic equation of this equation  
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and assuming that

 

and assuming that 

   (41) 
one can rewrite the characteristic equation (37) in a more concise form: 

r4 + 2Br2 + C = 0     (42) 
and the quadratic equation (38) in a form: 

R2 + 2BR + C = 0     (43) 
Such notation allows to clearly discuss forms of the solution of the 4th order 

ODE for the even amplitude a2 = a2(z). Thus, it will be analysed a possibility of 
excitation of oscillations of amplitudes of the temperature fluctuations within the 
whole building partition forced to transport these fluctuations across the partition. 

The coefficients (41) used in Eqs. (42) and (43) are the functions of: 
 the frequency 1 of the even fluctuation with the amplitude a2 and the frequency 2 

of the odd fluctuations with the amplitudes b1 and b3, 
 the saturation 0 < I < 1 and saturation 0 < II = 1  I < 1 (determined with use of 

the saturation I) – they are geometrical fractions of the areas occupied by the 
components with conductivities kI and kII, 

 a quotient of the conductivities kI and kII. 
The aforementioned analysis, being the subject of this work, consists in 

presentation of a form of the 4th order ODE (36) for the even amplitude a2(z). 
 
When does a boundary thermal load cause a thermal pulsation of a composite 
partition? 
1) Analysis for the frequencies 1 = 5 and 2 = 6 
- Numerical analysis of the sign of the determinant of the quadratic equation 

(38) being the characteristic equation of the equation for the amplitude a2(z) of 
the even fluctuation transported through a composite building partition and 
cooperating with two remaining Fourier fluctuations 

It has been found that the sign of the determinant  

 (44) 
is always positive, negative or zero depending on the frequency 1 and 2, saturations 
I, II and quotient of the conductivities kII/kI (cf. Fig. 1) 
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one can rewrite the characteristic equation (37) in a more concise form:

r4 + 2Br2 + C = 0  (42)
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and the quadratic equation (38) in a form:

R2 + 2BR + C = 0  (43)

Such notation allows to clearly discuss forms of the solution of the 4th order ODE for the even amplitude 
a2 = a2(z). Thus, it will be analysed a possibility of excitation of oscillations of amplitudes of the temperature 
fluctuations within the whole building partition forced to transport these fluctuations across the partition.

The coefficients (41) used in Eqs. (42) and (43) are the functions of:
− the frequency ν1 of the even fluctuation with the amplitude a2 and the frequency ν2 of the odd fluctuations 

with the amplitudes b1 and b3,
− the saturation 0 < ηI < 1 and saturation 0 < ηII = 1 − ηI < 1 (determined with use of the saturation ηI) – they 

are geometrical fractions of the areas occupied by the components with conductivities kI and kII,
− a quotient of the conductivities kI and kII.

The aforementioned analysis, being the subject of this work, consists in presentation of a form of the 4th order 
ODE (36) for the even amplitude a2(z).

When does a boundary thermal load cause a thermal pulsation of a composite partition?
1) Analysis for the frequencies ν1 = 5 and ν2 = 6

-	Numerical analysis of the sign of the determinant of the quadratic equation (38) being the charac-
teristic equation of the equation for the amplitude a2(z) of the even fluctuation transported through 
a composite building partition and cooperating with two remaining Fourier fluctuations

It has been found that the sign of the determinant ∆
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1 1 2
2 2 2

1 ( ),
2

B C           

 

1 1 2 2
2 2 2

2 2 2
2 2 2 2 2I 1 II 2 1 1 2

1 2 1 24 2 2 2 4 22
2 1

2 2
2 2 I 1 II 2 1 1 2

1 24 2 2

1 ( )
4

( ) 2 (2 2 1)1 1{[(2 ) (2 1) ] 2 [ ] } [2 (2 1)]
2 1 4

( ) 2 (2 21 {[(2 ) (2 1) ] 2 [

H H

H

H

H

k k k k
k k k

k k k
k k

      

       
  

     


      

      
       

      

   
     

     

 

2
1 22 2

2 1

2
2 2 2I 1 II 2 1 1 2

1 2 1 22 2 2
2 1

1)] 2 (2 1)]}
2 1 4

( ) 2 (2 2 1){[(2 ) (2 1) ] 2 [ ] 2 (2 1)}
2 1 4H

k k
k

 
 

       
 


  

 

  
      

   

 (44)

is always positive, negative or zero depending on the frequency ν1 and ν2, saturations ηI, ηII and quotient of the 
conductivities kII/kI (cf. Fig. 1)

fig. �.  Graph of the parameter ∆ for first analysis
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-	Numerical analysis of the roots of the quadratic equation (38) being the characteristic equation of the 
equation for the amplitude a2(z) of the even fluctuation transported through a composite building par-
tition and cooperating with two remaining Fourier fluctuations
The values of the determinant ∆ and both roots of the quadratic equation (38) has been analysed as functions 

of the frequencies ν1 and ν2, saturations ηI, ηII and quotient of the conductivities kII/kI (cf. Fig. 2)
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are positive. It means that the biquadratic equation (42) has four roots, two positive and two negative:
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(48) 

for any real constants C1+, C1, C2+, C2, possible to be determined from the boundary 
values (34). 
 
2) Analysis for the frequencies 1 = 1 and 2 = 1 
- Numerical analysis of the sign of the determinant of the quadratic 

equation (38) being the characteristic equation of the equation for the 
amplitude a2(z) of the even fluctuation transported through a composite 
building partition and cooperating with two remaining Fourier fluctuations 

It has been found that the sign of the determinant  

  (49) 
is always positive, negative or zero depending on the frequency 1 and 2, saturations 
I, II and quotient of the conductivities kII/kI (cf. Fig. 3) 

Fig. 3. Graph of the parameter  for second analysis 
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  (48)

for any real constants C1+, C1−, C2+, C2−, possible to be determined from the boundary values (34).
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2) Analysis for the frequencies ν1 = 1 and ν2 = 1
– Numerical analysis of the sign of the determinant of the quadratic equation (38) being the charac-

teristic equation of the equation for the amplitude a2(z) of the even fluctuation transported through 
a composite building partition and cooperating with two remaining Fourier fluctuations

It has been found that the sign of the determinant ∆
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is always positive, negative or zero depending on the frequency 1 and 2, saturations 
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is always positive, negative or zero depending on the frequency ν1 and ν2, saturations ηI, ηII and quotient of the 
conductivities kII/kI (cf. Fig. 3)

fig. 3.  Graph of the parameter ∆ for second analysis

–  Numerical analysis of the roots of the quadratic equation (38) being the characteristic equation of the 
equation for the amplitude a2(z) of the even fluctuation transported through a composite building 
partition and cooperating with two odd remaining Fourier fluctuations
The values of the determinant ∆ and both roots of the quadratic equation (38) has been analysed as functions 

of the frequencies ν1 and ν2, saturations ηI, ηII and quotient of the conductivities kII/kI (cf. Fig. 4)
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for any real constants C1+, C1−, C2+, C2−, possible to be determined from the boundary values (34) or from an 
appropriately formulated Cauchy problem for a homogeneous ODE of the 4th order.

remarKs and final conclusions

After the analysis, it is possible to conclude only about the dependence on the exponential function. Thus, in 
the case examined, the pure exponential damping occurs what enables to control only boundary conditions. In 
the graphs presented above, the area with the peak is the case of a difference between the material properties. 
It means that one of the materials is a very good conductor and the other one − very poor, thus, it occurs a huge 
damping of fluctuations within the composite walls. The higher the peak, the higher the absolute values of the 
roots (higher difference between the roots – they become distant from each other).

For both pairs of the analysed frequencies, i.e. for (ν1, ν2) = (5, 6) as well as for (ν1, ν2) = (1, 1) and for very 
high number of frequency pairs for which such analysis had been performed by making graphs of three forms 
presented above, it has been confirmed the hypothesis:
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the hypothesis formulated in the end of the paper is true, i.e. a conductor is able to 
induce only a typical, exponential damping of the transported boundary 
disturbances of temperature. Their sinusoidal pulsations in the direction 
transversal to the periodicity directions are not possible. 

4. In a special case, the satisfaction of the aforementioned hypothesis means that the 
exponential damping of the boundary impulse is maximal for components with 
very different material properties (for selected triplets of fluctuations). Such 
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Hence, the general integral of the homogeneous 4th order ODE (36) for the amplitude a2(z) (the even Fourier 
fluctuation being transported along with the two remaining Fourier fluctuations through the composite building 
partition) has a form

 

Research hypothesis: The determinant  and the both roots of the quadratic 
equation (43) 

       

(54) 
are positive. It means that the biquadratic equation (42) has four roots: two positive 
and two negative: 

  (55) 
Hence, the general integral of the homogeneous 4th order ODE (36) for the 

amplitude a2(z) (the even Fourier fluctuation being transported along with the two 
remaining Fourier fluctuations through the composite building partition) has a form 

                         

(56) 
Conclusion: The boundary thermal load in the form of the even Fourier fluctuation, 
being transported along with the two remaining Fourier fluctuations through the 
composite building partition, will never evoke a thermal pulsation of the composite 
partition. 
 
RESUMÉE 
In the paper, the surface localization of composite heat transfer equations has been 
used to the analysis of selected properties of the thermal behaviour of the boundary 
effect in periodic composites. This model is an equivalent reformulation of the 
parabolic equation of heat conduction. This reformulation consists of: 
- the single equation for an averaged temperature; 
- a finite set of equations for amplitudes of tolerance fluctuations describing thermal 

phenomena occurring on a discontinuity surface – these equations are fulfilled 
only on discontinuity surfaces; 

- an infinite set of equations for amplitudes of Fourier fluctuations (coefficients of 
the Fourier development) describing a behaviour of transport of boundary 
temperature disturbances through an area occupied by a composite – these 
equations are fulfilled only inside the areas of material (thermal) homogeneity. 

1. The homogeneous part of the set of equations for the Fourier amplitudes 
constitutes a description of a so-called thermal boundary effect, i.e. description of 
a part of transport of the boundary thermal fluctuations, not burdened by an 
influence of the averaged temperature, through an area in the composite. 

2. The transport of triple thermal Fourier impulses consisting of one odd and two 
even Fourier fluctuations, mutually cooperating with each other has been analysed 
in the paper. The literature distinguishes between two scalar parameters of 
damping of these fluctuations – a rotational and exponential damping. In the 
studies of the boundary effect behaviour, so far undertaken (correctors in the 
asymptotic homogenization or tolerance modelling) and not using the surface 
localization method, only the exponential damping was considered. 

3. It has been proved numerically in the paper that, for selected types of fluctuation, 
the hypothesis formulated in the end of the paper is true, i.e. a conductor is able to 
induce only a typical, exponential damping of the transported boundary 
disturbances of temperature. Their sinusoidal pulsations in the direction 
transversal to the periodicity directions are not possible. 

4. In a special case, the satisfaction of the aforementioned hypothesis means that the 
exponential damping of the boundary impulse is maximal for components with 
very different material properties (for selected triplets of fluctuations). Such 
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Conclusion: The boundary thermal load in the form of the even Fourier fluctuation, being transported along 
with the two remaining Fourier fluctuations through the composite building partition, will never evoke a thermal 
pulsation of the composite partition.

resumÉe

In the paper, the surface localization of composite heat transfer equations has been used to the analysis of selected 
properties of the thermal behaviour of the boundary effect in periodic composites. This model is an equivalent 
reformulation of the parabolic equation of heat conduction. This reformulation consists of:

-	 the single equation for an averaged temperature;
-	 a finite set of equations for amplitudes of tolerance fluctuations describing thermal phenomena occurring 

on a discontinuity surface – these equations are fulfilled only on discontinuity surfaces;
-	 an infinite set of equations for amplitudes of Fourier fluctuations (coefficients of the Fourier develop-

ment) describing a behaviour of transport of boundary temperature disturbances through an area occupied 
by a composite – these equations are fulfilled only inside the areas of material (thermal) homogeneity.

1. The homogeneous part of the set of equations for the Fourier amplitudes constitutes a description of a so-
called thermal boundary effect, i.e. description of a part of transport of the boundary thermal fluctuations, not 
burdened by an influence of the averaged temperature, through an area in the composite.

2. The transport of triple thermal Fourier impulses consisting of one odd and two even Fourier fluctuations, mu-
tually cooperating with each other has been analysed in the paper. The literature distinguishes between two 
scalar parameters of damping of these fluctuations – a rotational and exponential damping. In the studies of 
the boundary effect behaviour, so far undertaken (correctors in the asymptotic homogenization or tolerance 
modelling) and not using the surface localization method, only the exponential damping was considered.

3. It has been proved numerically in the paper that, for selected types of fluctuation, the hypothesis formulated 
in the end of the paper is true, i.e. a conductor is able to induce only a typical, exponential damping of the 
transported boundary disturbances of temperature. Their sinusoidal pulsations in the direction transversal to 
the periodicity directions are not possible.

4. In a special case, the satisfaction of the aforementioned hypothesis means that the exponential damping of the 
boundary impulse is maximal for components with very different material properties (for selected triplets of 
fluctuations). Such situations are corresponded with a characteristic peak in the graphs presented in the work.

The paper shows that during the transmission of three Fourier pulses through the tested composite, rotational 
damping was excluded. This result is so surprising and on this account it is present in the paper.
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TransporT współpracujących Ze soBą TrójeK TermicZnych fluKTuacji 
fouriera prZeZ dwufaZową periodycZną prZegrodę warsTwową

sTresZcZenie 

W pracy analizowano zjawisko efektu brzegowego w przegrodzie budowlanej zbudowanej z dwuskładniko-
wego kompozytu warstwowego. Przyjęto dwuwymiarowy model takiej przegrody, w którym efekt brzego-
wy jest opisywany układem równań różniczkowych zwyczajnych. W pracy numerycznie wykazano, że dla 
wybranych typów fluktuacji spełniona jest hipoteza sformułowana na końcu pracy, tj. że przegroda reaguje 
na obecność brzegowej paczki fluktuacji złożonej z jednej parzystej i dwóch nieparzystych fluktuacji je-
dynie typowym, wykładniczo tłumiennym przenoszeniem tych brzegowych fluktuacji. Nie są możliwe ich 
sinusoidalne pulsacje w kierunku poprzecznym do kierunków periodyczności. Tłumienie wykładnicze jest 
maksymalne dla składników o bardzo zróżnicowanych własnościach materiałowych składników (wartości 
parametrów kII/kI i ηI bliskie zeru). Takim sytuacjom odpowiada charakterystyczny pik wykresów zamiesz-
czonych w pracy. 

słowa kluczowe: przewodnictwo cieplne, efektywne przewodnictwo cieplne, zjawisko efektu brzegowego, 
przegroda budowlana


