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ABSTRACT

In the present paper, an infinite system of homogeneous differential equations in the Cauchy normal form 
was obtained to solve the problem of the stability of cylindrical anisotropic layered shells under the action of 
external torque, based on the spatial relationship of elasticity theory. The components of the stress state that 
are necessary to solve the equation system were derived analytically by using the generalised Hooke’s law. 
The results are obtained for a single-layer cylinder, and compared with the values of critical loads calculated 
using the well-known method proposed by Lechnitsky. The suggested approach could be implemented, for 
instance, to solve the problem of cylindrical two-layer shell stability under the action of torque, which is 
projected by calculating the shear stress. 
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INTRODUCTION

Composite cylindrical shells are widely used in various designs of modern technology. Sometimes their operat-
ing conditions are such that shear stress occurs in the shells and can reach critical values. The magnitudes of 
these stresses could are known from previously performed tests or found by calculation. At present, methods for 
calculating composite shells in spatial formulation using mathematical models of varying degrees of accuracy 
have been developed (Novozhilov, 1948; Lekhnitskiy, 1977; Guz’ & Babich, 1985; Grigorenko, Vasilenko & 
Pankratova, 1991; Kardomateas, 1995; Kardomateas & Philobos, 1995; Bazhenov, Semenyuk & Trach, 2010). 
In most studies, the structural idealisation of the composite determines that materials have three planes of sym-
metry. However, during the manufacturing of shells, for example, by means of winding there is an effect of 
anisotropy caused by the divergence of reinforcement directions to the shell axes (Bazhenov et al., 2010). There-
fore, there is a need to develop methods aimed at solving the problems of composite shell stability using a more 
general model of a composite with low material symmetry.

In paper by Guz’ and Babich (1985), the solutions for three-dimensional stability of orthotropic cylinders 
were presented, including the action of axial compressive force and uniform lateral pressure; and in articles by 
Kardomateas (1995), and Kardomateas and Philobos (1995), the buckling of orthotropic cylindrical shells in 
spatial formulation when determining the critical state using dependencies (Lekhnitskiy, 1977) is studied.
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In the presented paper, a three-dimensional theory of elasticity to solve the problem of the composite aniso-
tropic shell stability is considered (Novozhilov, 1948). The obtained three-dimensional solutions can serve as 
benchmarks in the calculations of stability of shell structures by numerical methods that are applicable to more 
complicated structural shapes, too.

MATERIAL AND METHODS

Elastic anisotropic composite cylindrical shells, assigned to the cylindrical (curvilinear) coordinate system 
r, z, θ are analysed. The axes r and θ are the polar coordinates of the circular cross-section of the cylinder, z is the 
corresponding cross-section, normal to the axis at the axis point, the origin of which coincides with the centre of 
the cylinder base. The geometry of the shell is determined by its length along the generatrix L, as well as by the 
radii of the inner R1 and outer surfaces R2, and is presented in Figure 1.

Fig. 1. A cylindrical thick-walled anisotropic shell

In the non-linear theory of elasticity (Novozhilov, 1948), the element equilibrium conditions for a cylindrical 
coordinate system are in three equations:
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in which Fr, Fz, Fθ are the vector projections of specific volumetric force on the directions tangent to the coordi-
nate lines r, z, θ, and σ̂ , τ̂  are the projections of stresses on the axis of the accepted curvilinear coordinate system 
of the undeformed shell, that are determined by dependencies (Novozhilov, 1948).

The linearised deformation components and the rotation angles of the shell are related to its displacements 
by the following dependencies:
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where uz, uθ, ur are the displacement of the cylinder points at the directions of the axes z, θ, r, respectively.

The relationship of the generalised Hooke’s law that connects stresses to strains in the rotation of the ortho-
tropic axes relative to the axis z, can be given as (Lekhnitskiy, 1977):
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In (3) ( ), 1,6ija i j =  are the mechanical constants of a material having one plane of elastic symmetry that is 
parallel to the median surface of the cylinder. Their relation to the material constants, orthotropic axes of which 
coincide with the coordinate axes, is represented in paper by Lekhnitskiy (1977).

The relationship of the generalised Hooke’s law for materials with one plane of elastic symmetry (3) is writ-
ten in the inverse form (Grigorenko et al., 1991), which will be used to solve the system of equations (1):
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where bij (i, j = 1, 2, 6), ( )1,4ic i =  are the characteristics calculated by using the mechanical constant 

( ), 1,3,6ija i j =  of the shell material.
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To solve the problem of the stability of cylindrical anisotropic shells, according to the Euler’s static cri-
terion, we linearised the system of equations (1) relative to derivatives by a change of variable r (Semenyuk, 
Trach & Podvornyi, 2019; Trach, Semenyuk & Podvornyi, 2019). Therefore, we replace the stresses σzz, σθθ, 
τzθ by dependences (4) with the consideration of (2) and, using the ratio for deformation erz, erθ, err (2); after 
the corresponding transformations, we obtain a system of stability equations for anisotropic thick-walled 
cylindrical shells:
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so that 0
zzσ  and 0

zτ θ  are subcritical values of stresses. Since the torsion problem is considered, the stresses 0
zzσ  and 

0
zτ θ  (Lekhnitskiy, 1977; Grigorenko et al., 1991) represented in system (5) are prevailing. This approach indicates 

the homogeneity of the subcritical stress state of the cylindrical shell.

The next step is to determine the relation between the stresses in the construction. The shell retains an unde-
formed shape before the stability loss, and in the subcritical phase, the deformation ezz is zero and is described 
as follows (4):

 0 0
11 16 0zz zz re a aσ τ θ= + =

Hence the relationship between axial and tangent subcritical stresses is:
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One of the methods to solve the obtained three-dimensional problem (5) is to transform it into a one-dimen-
sional one; for this purpose, we use the Bubnov–Galerkin procedure. Thus, all functions have been developed 
into trigonometric series in the coordinate along the generatrix z of the cylinder, so that they satisfy the boundary 
conditions at the ends of the shell

 0 ,  0z z rz zu= = =θ θτ τ τ  (7)

and we also consider the frequency of functions in a circular coordinate θ (Grigorenko et al., 1991).
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After several mathematical transformations and the separation of variables in equations (5) by means of re-
lations (8), we obtain an infinite system of homogeneous ordinary differential equations of stability in Cauchy 
normal form:

 ( ) ( ) ( ),,  i j
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T r y T r t r
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1 2 3 4 5 6 1 2 3 4 5 6, ; , ; , ; , ; , ; , ; , ; , ; , ; , ; , ; ,pk pk pk pk pk pk mk mk mk mk mk mky y y y y y y y y y y y y=  is the solving vector 

function, and the matrix T(r) consist of non-zero elements of the coefficients for unknown vector functions y, 
which are considered in (Semenyuk et al., 2019).

 
The implementation of the obtained system of stability equations (9) with the given boundary conditions (7) 

is carried out using the numerical method of discrete orthogonalisation (Grigorenko et al., 1991). The solving 
algorithm for the problem of rotating shell stability under the end shear stress has been developed as a software 
package of applications for the personal computer.

RESULTS AND ANALYSIS OF NUMERICAL CALCULATIONS 

Experimental testing and implementation of the capabilities of the proposed approach determine the con-
sideration of the circular cylindrical shell stability to torque. The shell is formed by winding and has the 
given geometric and mechanical characteristics: the inner radius R1 = 0.585 m and outer R2 = 0.615 m of 
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the surfaces, the length L = 1.2 m, Ez = 1,900 MPa, Eθ = 1,200 MPa, Er = 450 MPa, Gzr = Gθr = 230 MPa, 
Gzθ = 300 Pa, νzθ = 0.15, νrθ = 0.3, νrz = 0.07. Figure 2 shows the graphs at the axes points cr

zτ ψθ − , where cr
zτ θ 

is the critical value of the shell shear stress (vertical axis), and the divergence of the reinforcement directions 
and the axis of the shell is determined by the angle ψ (horizontal axis).

In Figure 2, curve 1 is derived for a single-layer shell, curve 2 is for a two-layer cross-wound shell, and curve 
3 is obtained by solving the system of equations (9) at subcritical stresses 0

zzσ  and 0
zτ θ  which are calculated by 

the method presented in (Lekhnitskiy, 1977); directions z and θ are analysed in Figure 1. 

Fig. 2. The dependence of the cylinder shear stresses on the angle of rotation of the main directions of the material 
elasticity

The analysis of the results shows that the critical values for a one-layer shell are calculated using subcritical 
stresses 0

zzσ  and 0
zτ θ  which were obtained according to solutions (6) and are consistent with the given critical 

values taking into account the subcritical stresses (Lekhnitskiy, 1977). It is also proved that layering of the shell 
plates significantly affects the cylinder stability at different angles of laying composite material – curves 1 and 2 
(Fig. 2).

CONCLUSIONS

Thus, a solution of the problem of stability of the circular cylindrical shells under torque has been found, taking 
into account the anisotropy of the material with one plane of elastic symmetry, derived in the spatial formulation. 
A solvable system of differential equations of stability is obtained based on three-dimensional relations within 
the theory of elasticity. Using the proposed approach, the dependence of the critical values of the shear stresses 
on the reinforcement angle of the cylindrical shell is investigated.
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STATECZNOŚĆ ANIZOTROPOWYCH POWŁOK CYLINDRYCZNYCH POD WPŁYWEM 

SKRĘCANIA W POŁOŻENIU PRZESTRZENNYM

STRESZCZENIE

W przedstawionej pracy uzyskano nieskończony układ jednorodnych równań różniczkowych w rozkładzie 
normalnym Cauchy’ego, aby rozwiązać problem stateczności anizotropowych warstwowych powłok cylin-
drycznych pod wpływem oddziaływania zewnętrznego momentu skręcającego według relacji przestrzennych 
przewidzianych w teorii sprężystości. Składowe stanu naprężenia, które są niezbędne do rozwiązania układu 
równań, uzyskano w drodze analitycznej z użyciem uogólnionego prawa Hooke’a. Wyniki uzyskano dla cy-
lindra jednowarstwowego i porównano z wartościami obciążeń krytycznych obliczonymi z użyciem dobrze 
znanej metody zaproponowanej przez Lekhnitskiego. Sugerowane podejście można zastosować na przykład 
w celu rozwiązania problemu stateczności dwuwarstwowej cylindrycznej powłoki pod wpływem momentu 
skręcającego, który jest określany poprzez obliczenie naprężenia ścinającego.

Słowa kluczowe: cylinder, stateczność, anizotropia, skręcanie, formowanie przestrzenne


