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ABSTRACT

Using the Rayleigh’s method, the first natural frequency and period corresponding to the first mode of trans-
versal vibrations for cone and wedge beams, having non-uniform cross-section, are calculated in this study.
Six different supporting schemes are considered. It has been assumed that the beams are made of a homoge-
neous and elastic material and the deflection line of the beam axis during vibrations has the same shape as the
axis deflected by a static constant uniform continuous load. The values of frequencies, calculated according
to the presented procedure, have been compared to the results obtained in the Finite Element Method as well
as to the benchmark solutions given in the literature for the natural vibrations of Euler-Bernoulli’s beam. High
conformity of results, enough for engineering calculations, is concluded.
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INTRODUCTION

One of the methods of calculation of frequencies of
subsequent modes of free vibrations is the integration
— for definite boundary conditions — of the differential
equation of Euler-Bernoulli beam. A procedure enab-
ling to achieve solution in form of Bessel functions and
then numerical solution for truncated cone and trun-
cated wedge beam is presented by Conway and Dubil
(1965). Other authors submitted solutions to calculate
natural frequencies for beams having variable cross-
sections and various shapes: for example in the case of
beams having constant size in one direction (e.g. width)
and variable in second direction — linearly (Datta & Sil,
1996), parabolically (Caruntu, 2009), exponentially
(Ece, Aydogdu & Taskin, 2007) — or for double tape-
red beams (Zhou & Cheng, 2000). Moreover, studies
have been undertaken on vibrations of such variable
cross-section beams as for example: with concentrated
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masses (Wu & Chiang, 2004; Torabi, Afshari & Najafi,
2013), consisting of two segments (Laura, Gutierrez
& Rossi, 1996) or considering other dynamic effects
(Wang, 2012). For many cases, as beams in form of
hollow solids of revolution (curvilinear truncated cones
with generatrices described by some selected curves),
there are no benchmark solutions in the literature. In
this case, the Rayleigh’s method is useful which allows
to determine the first natural frequency of such beams.
This approach was applied by Jaworski and Szlachetka
(2017) for hollow truncated cone beams with rectilinear
generatrice and generatrice shaped as parabola which
is concave according to the beam axis, or Szlachetka,
Jaworski and Chalecki (2017) — shaped as parabola
which is convex according to the beam axis.

The purpose of this paper is to determine, using the
Rayleigh’s method, first natural frequency of transver-
sal vibrations of bars (beams or posts) having a form
of truncated cone and truncated wedge. It has been
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assumed that the vibration amplitude is small, material
of the bars is homogeneous, isotropic and ideally elas-
tic and their mass is distributed continuously. Assum-
ing that the neutral bar axis deflected during vibrations
has the same shape as the axis deflected by a static con-
stant uniform continuous load, first natural frequen-
cies are determined for truncated cone and truncated
wedge beams for six supporting schemes: clamped —
pinned (CL-PN), clamped — sliding (CL-SL), clamped
— clamped (CL-CL), clamped — free (CL-FR), pinned
—sliding (PN-SL), pinned — pinned (PN-PN).

In the case of a truncated cone beam (Fig. 1), the
diameter A(x) and second area moment J(x) in any
cross-section defined by a coordinate x are equal to,
respectively:

A(x):D—ngx (1)
7ZA4
J(x)= 645)‘) @)

and a diameter quotient describing a convergence ratio
of cone generatrices is defined as:

== 3
= &)

where: D, d — diameters of the beam at its ends;
L — beam length.

In the case of a truncated wedge beam vibrating in
the x-z plane (Fig. 1), wherein one face of the wedge
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Fig. 1.

has a constant width, whereas the height and second
area moment in any cross-section defined by a coordi-
nate x are equal to, respectively:

) =1 =120 @
3
J(x) b”u(x) (5)

and a height quotient, describing a convergence ratio
of wedge walls, is defined as:

H
¢—7 (6)

where: H, h — heights of the beam at its ends;
b —beam width;
L —beam length.

MATERIALS AND METHODS

Calculation of beam deflection

The deflection of a truncated cone and wedge beam is
calculated by quadruple integration of the differential
equation of bar elastic deflection curve:

d—z[EJ (x)dzu(x)]w ()

dx dx®

where: u(x) — deflection;
E — longitudinal modulus of elasticity;
¢ —uniform continuous load.

L

ﬁ‘dx

H _"_X(X)_”_'TE: Th—>

zY

»y

Scheme of the beams under consideration: a — truncated cone beam; b — truncated wedge beam
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Boundary conditions are given in Table 1 and they depend on a supporting scheme under consideration.

Table 1. Supporting conditions

Supporting scheme Boundary conditions
CL-PN u(0) = @(0) =u(L) = ﬂ(L) =0
dx dx*
du du d’u
CL-SL 0)=—0)=—(L)=—(L)=0
u(0) dx( ) dx( ) dx3( )
du du
CL-CL u(0) = E(O) =u(L) = E(L) =0
CL-FR u(0) = %0y = Chpy =y Z g
dx dx* i’
PN-SL u(0) = d—zu(O) = @(L) = d—3u(L) =0
dx? dx dx®
d*u d’u
PN-PN u(0) =—0) =u(l) =—(L) =0
(0) = -5 =u(L) =—5(L)

Truncated cone
The quadruple integration of equation (7) along with consideration of (2) and (3) gives:

4.4 _
u(x) =Cy + Cyx + 2L [( 1 )2(02——3“2”7 3x’7c1+
3

ExD*(n -1\ 3(x + Ly — xn n-1
(®)
Ln(6x + 5Ln — 6xn
- ( 5 )qJ— q 21n|x(77—1)—77L|J
2(n-1) (n-1

where integration constants C,, C,, C,, C, must be determined from the boundary conditions (Table 1). For
example, if a truncated cone beam is clamped in both ends, then the full equation of deflection has a form:

3.4 _ oy — 2 _
u(x) = 324L77 q 3[_X(L x)(Ln —x 2x77) L ¥ (2Ln — 2xn +L)21nL .
ExD"(n -1) (Ln + x — xn) (m—1)(Ln + x — xn) ©)
n(L-x)(n+20) | —l—L]
D rs—ap - j(r =1) - 11
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Assuming that the beam axis, deflected as a result
of vibrations, has a shape described by equation (9),
one can calculate the potential (elastic) energy in the
maximally deflected position and the kinetic energy in
the undeformed (neutral) position. The potential en-

then the kinetic energy of the beam is expressed as:

() =
(12)

ergy is equal to: 7D (x)

dx

e

S (x)u
2

0

b

JS@' (x)p

I 2

1 0

E = [—qu(x)dx (10)
P 0 2 where: @ — vibration frequency;

p — mass density.

If a mass of a material slice with the thickness dx is

denoted as (x), equal to: Comparison of the energies enables to determine the

vibration frequency and period. After integration and

simplification, the vibration period can be expressed as
dx (11)  afunction of the material constants £'and p as well as the
4 parameters D, L, 7, determining the beam geometry:

#(x) = £ ()

_or_zln2 [2 [p |R(n) + B(n)ng + B(n)(nn)’ + B (n)(Inn)’
T‘_‘TE\E\E\/

- (13)
@ Py () + F(m)Inn + P, (1) (In7)

where:

B(n) =-11-1957 + 582n> — 25 7707 + 75 864n* — 75 864n° + 25 7707° — 582" +
+1957% +117°

P (1) = =1747 - 1290777 — 33 966" + 35 4307* + 35 4307° —33 9667° —1290n" —1747°

P, (1) = -864n> =20 5207° — 11 880n" +11 8807° + 20 5207° + 8647’

P, (n) = —43207° —8640n* — 86407° — 43207° (14)

B (n)=-1+23n-163n> +597n° —1338n* +19745° —1974n° + 13387’ - 597"

+163n° = 237" + p'!
B (n) =121 -84n* +240n° —336n* +1687° +168n° —336n" +2407° - 847" + 127"

P (n)=4n-24n" +60n’ —84n* +84n° —84n° +84n’ —60n® +24n° - 4n"

The abovementioned formula has been derived with use of the MATHEMATICA environment and trans-
formed to a form which enables to count vibration period using only a pocket calculator. Formulas for vibration
periods for other supporting schemes can be presented in similar way. The appropriate formula for the CL-FR
scheme can be found in the paper by Jaworski, Szlachetka and Aguilera-Cortés (2015).

Truncated wedge

The quadruple integration of equation (7) and consideration of (5) and (6) yields in a deflection formula for
the truncated wedge beam, wherein integration constants C,, C,, C,, C, must be determined according to the
boundary conditions (Table 1):
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~ 6L'¢’ 1 1 Ly
u(x) = C, +C3x+EbH3 (¢_1)2 [x+L¢—x¢C2 +¢_1(x+L¢_x¢+21n|X(¢—1)—L¢|jC1 +

252 (¢ = 1)° = 4Lxp (¢ — 1) + I29]
_(¢_11)2 (9 2>(x+L’;¢_<i¢)>+ ? —(x+3L¢—X¢)1n|x(¢—1)_14¢|}1] 1s)

For example, if a truncated wedge beam is clamped in both ends (CL-CL), then the full equation of deflection
has a form:

6L'¢’q x(L-x) xInL
u(x) = + +
EbH (9 —1)(2(¢—1)+ (¢ +1)(InL — InLg)) (x + Lo —x¢  $—1
¥ (In L) (¥ +0* (L= x)")InLinLg
+ - +

2 2

(x+L¢—x¢)(¢—1) (x+L¢—x¢)(¢—1)
(16)
+(L —x)InLg(x + Lp - 2x¢ + ¢* (L — x)(In Lg — 1)) .

(x + Lo — x¢) (¢ —1)°

((L-2x)(¢—1)+ (InL - InLg)(—x + Lp — x¢))In|x (¢ — 1) — L4
(6-1)

The energy comparison and appropriate transformations yield in the formula for vibration period in a form:

+

S 3H(p-1 2 3 4 a7

r o LY JZJRA¢)+R2WMn¢+RA¢Mm¢Y-+&(m0nm3+RSWMnanm5
) VE\ Ry (9) + R (9)In ¢ + Ry (¢) (In 9)° + Ry (9) (In9)’ + Ry (¢) (In ¢)

R (§) = —212 + 1824 ¢ — 5176 ¢* + 5728 ¢ — 5728¢° + 5176 ¢° — 1824 ¢" + 212 ¢°

Ry (9) = —112 + 489 + 267247 — 9328¢° + 134409 — 9328¢° + 2672¢° + 4897 —112¢°

Ry (¢) = —15-104¢ — 1234 ¢” + 2840¢° — 28409’ +1234¢° +104 ¢’ +15¢°

R, (9) = =276 4" — 2976 ¢° + 6504 ¢* — 2976 ¢° — 276 ¢°

Rs (¢) = 864¢* "
R (9) = =8 + 320 — 409° + 409° — 32¢° + 8¢°

R; (¢) = =6 — 49 + 70¢* — 1204 + 704" — 4¢° — 6¢°

Ry (9) = —1 -84 + 199> — 199" + 8¢° + ¢°

Ry (¢) = 89" — 16¢° + 8¢°

Ry (9) = 4¢9” — 44"
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COMPUTATIONAL EXAMPLES, VALIDATION OF us values of diameters d (for the truncated cone beam)
RESULTS or section heights 4 (for the truncated wedge beam).

The following data have been assumed: £ =205 GPa,
The periods for the first mode of free transversal vi- = 7850 kg'm™, beam length L = 6 m; for the trun-

brations of beams are presented in Figures 2-7. The  cated cone D = 0.2 m and for the truncated wedge
beams have various static schemes and various conver-  7=(.2 m, » = 0.1 m. Results of these calculations are

gence ratio of lateral faces what corresponds to vario-  compared to those obtained with use of FEM.

0.0250.05 0.1 0.15 02 025 0.3 0.35 0.4
[ !ﬁ T T T T T T T ]
0.08] X ]
b
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i R x
r K <
0.04F . )=
T =
C 1 1 1 | 1 1 1 1 |
0.0250.05 0.1 0.15 02 025 0.3 0.35 0.4
d, hi[m]

Fig.2. Comparison of free vibration periods T for truncated cone beams (dots) and truncated wedge beams (squares) to
the results of FEM (crosses) for the clamped-pinned supporting scheme (CL-PN)
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0.12 b
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011 | | | | | | | | T
0.0250.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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Fig.3. Comparison of free vibration periods 7 for truncated cone beams (dots) and truncated wedge beams (squares) to
the results of FEM (crosses) for the clamped-sliding supporting scheme (CL-SL)
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Fig. 4.

Comparison of free vibration periods 7 for truncated cone beams (dots) and truncated wedge beams (squares) to

the results of FEM (crosses) for the clamped-clamped supporting scheme (CL-CL)
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Fig. 5.

Comparison of free vibration periods 7 for truncated cone beams (dots) and truncated wedge beams (squares) to

the results of FEM (crosses) for the clamped-free supporting scheme (CL-FR)

The results obtained in this study are concordant
with those achieved from calculations performed with
use of FEM in the Autodesk Fusion 360 program. The
highest differences between the results from both meth-
ods in the investigated range do not exceed 1.4% for
the truncated cone and 1.3% for the truncated wedge.
The average difference between the results from both
methods is equal to 0.4%.

architectura.actapol.net

The results obtained in this study from the calcu-
lations for beams characterized by the convergence of
lateral faces from 1 to 10 are compared to the results
of a benchmark solution for free vibrations of Euler-
-Bernoulli beam, given by Naguleswaran (1994).
The comparison is contained in Table 2 (truncated
cone beam) and Table 3 (truncated wedge beam);
a dimensionless frequency parameter Q, presented in
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Comparison of free vibration periods 7 for truncated cone beams (dots) and truncated wedge beams (squares) to

the results of FEM (crosses) for the pinned-sliding supporting scheme (PN-SL)
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Fig. 7.

Comparison of free vibration periods 7 for truncated cone beams (dots) and truncated wedge beams (squares) to

the results of FEM (crosses) for the pinned-pinned supporting scheme (PN-PN)

these tables, is described by:

2
02l A @
T\J, VE
where 4 and J are, respectively, cross-section area
and second area moment for x = 0.

(19)

The parameter Q calculated by the authors is
slightly higher than the values given by Naguleswaran
(1994). The relative error ¢ does not exceed 1.7% for
the truncated cone and 0.5% for the truncated wedge
and the difference does not exceed 0.3% in average.
The highest differences occur for high (equal to 10)
convergence of lateral faces.
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Table 2.

Comparison of the authors’ results (A) to the benchmark solution (N) for truncated cone beam

d[cm] 2 4 6 8 10 12 14 20
7 10 5 10/3 2.5 2 5/3 10/7 1
QA 10.9433 12.5014 13.9292 15.2717 16.5542 17.7917 18.9867 22.4507
CL-CL QN 10.7636 12.3820 13.8345 15.1898 16.4790 17.7199 18.9232 22.3731
0 [%] 1.67 0.96 0.68 0.54 0.46 0.41 0.34 0.35
QA 10.0692 10.8836 11.6115 12.2725 12.8826 13.4525 13.9898 15.4516
CL-PN QN 9.9086 10.7987 11.5569 12.2328 12.8505 13.4238 13.9617 15.4213
0 [%] 1.62 0.79 0.47 0.32 0.25 0.21 0.20 0.20
QA 7.3699 6.5248 6.0818 5.8282 5.6817 5.6019 5.5666 5.6127
CL-SL QN 7.2980 6.5159 6.0781 5.8223 5.6728 5.5904 5.5527 5.5932
o [%] 0.99 0.14 0.06 0.10 0.16 0.21 0.25 0.35
QA 7.2794 6.2032 5.5134 5.0170 4.6364 4.3320 4.0812 3.5302
CL-FR QN 7.2049 6.1964 5.5093 5.0090 4.6252 4.3188 4.0669 3.5156
0 [%] 1.03 0.11 0.07 0.16 0.24 0.31 0.35 0.42
QA 0.2450 0.5728 0.8875 1.1752 1.4367 1.6756 1.8955 2.4693
PN-SL QN 0.2450 0.5727 0.8874 1.1752 1.4367 1.6754 1.8951 2.4675
0 [%] 0.012 0.016 0.009 0.002 0.003 0.014 0.023 0.071
QA 3.0720 4.3763 5.3800 6.2261 6.9707 7.6426 8.2594 9.8811
PN-PN QN 3.0512 4.3527 5.3589 6.2086 6.9566 7.6314 8.2502 9.8695
0 [%] 0.54 0.39 0.28 0.20 0.15 0.11 0.54 0.12
Table 3. Comparison of the authors’ results (A) to the benchmark solution (N) for truncated wedge beam
h [em] 2 4 6 8 10 12 14 20
O[] 10 5 10/3 2.5 2 5/3 10/7 1
QA 9.9333 11.8915 13.5356 15.0171 16.3945 17.6980 18.9469 22.4508
CL-CL QN 9.8846 11.8417 13.4832 14.9616 16.3356 17.6354 18.8791 22.373
0 [%] 0.49 0.42 0.39 0.37 0.36 0.35 0.36 0.35
QA 8.6635 9.8273 10.7633 11.5822 12.3265 13.0178 13.6696 15.4517
CL-PN QN 8.6301 9.7995 10.7372 11.5564 12.3001 12.9903 13.64 15.4213
J [%] 0.39 0.28 0.24 0.22 0.21 0.21 0.22 0.20
QA 4.8325 4.7540 4.7873 4.8675 49715 5.0888 5.2142 5.6127
CL-SL QN 4.8274 4.7459 4.7766 4.8548 4.9573 5.0733 5.1976 5.5933
0 [%] 0.11 0.17 0.22 0.26 0.29 0.31 0.32 0.35
QA 4.6360 4.3023 4.0947 3.9488 3.8389 3.7524 3.6820 3.5302
CL-FR QN 4.6307 4.2925 4.0817 3.9343 3.8238 3.7371 3.6667 3.51557
0 [%] 0.12 0.23 0.32 0.37 0.40 0.41 0.42 0.42
QA 0.4170 0.7451 1.0252 1.2749 1.5036 1.7167 1.9177 2.4693
PN-SL QN 0.4170 0.745 1.0251 1.2748 1.5033 1.7162 1.9169 2.4674
0 [%] 0.005 0.010 0.006 0.009 0.020 0.029 0.043 0.076
QA 3.8999 4.9294 5.7541 6.4745 7.1289 7.7365 8.3088 9.8770
PN-PN QN 3.8895 4.9148 5.7454 6.4666 7.1215 7.7295 8.3019 9.8695
0 [%] 0.27 0.30 0.15 0.12 0.10 0.09 0.08 0.08
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CONCLUSIONS

The Rayleigh’s method can be successfully applied for
calculations of the first natural frequency of transverse
vibrations of non-prismatic bars. Comparison between
the results obtained by the authors and the results of the
benchmark solutions for Euler-Bernoulli’s truncated
cone and wedge beams or the FEM results shows that
the accuracy of the presented method is sufficient for
practical engineering calculations.

For many cases — what has been shown for the
CL-CL truncated cone and wedge beams — frequency
(or period) formulas obtained using the Rayleigh’s
method with assumption that the bar axis deflected
during vibrations has a shape of a beam deflected by
a static constant uniform continuous load, can be pre-
sented in so simple form that a pocket calculator is
sufficient for calculations.
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PIERWSZA CZESTOSC DRGAN WELASNYCH BELEK W KSZTALCIE SCIETEGO STOZKA

I KLINA

STRESZCZENIE

Metoda Rayleigha wyznaczono czgstos$¢ i okres odpowiadajacy pierwszej postaci drgan wlasnych (gigtnych)
belek o zmiennym przekroju poprzecznym, w ksztalcie $cigtego stozka i $cigtego klina. Uwzgledniono szesé
schematow podparcia. Przyjegto, ze belki sa wykonane z materiatu jednorodnego i sprezystego, i ze ksztatt
wychylenia osi belki podczas drgan odpowiada ugigciu statycznemu pod dziataniem statego obciazenia cia-
glego. Otrzymane czgstosci drgan pordwnano z rezultatami uzyskanymi metoda elementéw skonczonych
oraz z podanymi w literaturze wzorcowymi wynikami dla drgan wtasnych belki Bernoulliego-Eulera. Stwier-
dzono duza zgodno$¢ wynikdw, wystarczajaca do obliczen inzynierskich.

Stowa kluczowe: scigty stozek, Scigty klin, belka, pierwsza czgsto$¢ drgan wlasnych, metoda Rayleigha
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