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INTRODUCTION

The paper proposes a certain two-stage method of 
modeling periodic composite beams. In the first stage 
corresponds to the typical procedure, based on the 
of the virtual displacements principle, leading to the 
beam theory. The second stage is a special implemen-
tation of the constraints method developed in Woźniak 

and Wierzbicki (2000) as the tolerance modeling tech-
nique. The problem investigated in this paper is in fact 
identical to the problem perfectly described in Jędry-
siak (2020). Both works, however, differ in the way of 
implementing of the tolerance modeling in the second 
stage. The alternative approach proposed in this paper 
leads to an infinite system of model equations and this 
infinite number of equations appears to be a drawback 
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absTRaCT

The aim of the study is to develop an analytical reformulation the known theory for thin periodically non-
homogeneous viscoelastic beams, which should to form the basis for the planned research of the full beam 
dispersion relation. The methodology applied in the paper is similar to that described in paper Tolerance Mo-
delling of Vibrations and Stability for Periodic Slender Visco-Elastic Beams on a Foundation will Damping. 
Revisiting by Jarosław Jędrysiak, published in scientific journal “Materials” in 2020, but it differs in the way 
of the use of tolerance modeling in the beam theory. The mathematical tool of considerations is a special 
choice of the micro-macro decomposition of the beam deflection. It is based on a certain regularization of the 
displacement field (in the small neighborhood of discontinuity surfaces) and results a certain reformulations 
of the classical beams theory. Obtained model equations is an alternative proposal for model equations ob- 
tained in mentioned paper by Professor Jędrysiak as a certain approximation for periodically nonhomogene-
ous viscoelastic beams theory as a result of the original tolerance modeling developed. The standardization of 
the beam deflection field proposed in the presented paper allows us to use the infinite Fourier expansion for 
deflection field in any region occupied by a homogeneous periodic composite material, which can be modeled 
in a typical way using the virtual work principle for commonly used beam constrains. The deflection field of 
the beam is written in the form of an infinite Fourier series, using periodically distributed region of material 
homogeneity of the beam. Applied method can be viewed as an attempt to use an infinite number of shape 
functions in the tolerance modeling but at the same time as an equivalent reformulation of the equations of 
the beam vibration theory. The obtained system of equations is an infinite system of ordinary differential 
equations for infinitely many Fourier coefficients in the mentioned Fourier expansion of the beam deflection 
field with respect to the base described in the surface location method.
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of the proposed approach. Each of these shape func-
tions, however, describes a different type of periodic 
beam deflection fluctuations, and they all complete an 
orthogonal Fourier basis. This method of realization of 
the tolerance modeling has already been used in ther-
mal conductivity of periodic composites as the surface 
localized tolerance modeling (cf. Kula & Wierzbicki, 
2019). In order to make the paper self-consistent, 
both stages of the modeling of periodic slender visco-
-elastic composites will be described. 

A graphic illustration of the considered beam in the 
special case of two-phased periodic composite mate-
rial is located in the figure. 

Fig.   A graphic illustration of the considered two-phased 
periodic beam together with distinguished periodic-
ity cell ∆ and materially homogeneous cell parts ∆1 ≡ 
≡ Ω1 ∩ ∆ and ∆2 ≡ Ω2 ∩ ∆

For given: length of a beam L, L > 0 and beam axis 
range , for given beam width 
a = a(x) and beam height h = h(x), x ∈ [0, L], consider 
the undeformed beam region as 

 (1)

Assume that geometrical properties of the beam, 
represented by height function h = h(·) and weight 
function a = a(·), as well as foundation properties, rep-
resented by Winkler coefficient k = k(·), damping pa-
rameter c = c(·) and mass density of foundation μ = μ(·), 
which should be some restrictions of l – periodic func-
tions, 0 < l < L, i.e. functions defined in R and satisfy-

ing condition f(x) = f(x + l) for any x, x + l ∈ R. Posi-
tive real number l not necessary need to be the smallest 
period of k = k(·), c = c(·) and μ = μ(·) but it, together 
with independence on (y, z) of h = h(·) and a = a(·), de-
termines the ∆ – periodicity property of the considered 
beam for . 
Hence, elasticity modulus E(·, y, z), visco-elasticity 
modulus B(·, y, z) and mass density ρ(·, y, z) should 
be assumed to be ∆ – periodic functions. 

In the subsequent considerations we shall also as-
sume that discontinuity surfaces Γ separating beam 
sub-regions occupied by the same homogeneous ma-
terial are perpendicular to the beam axis. Hence 

  (2)

for k = 1, ..., κ (and given positive integer κ) is a se-
quence of the repetitive cell sub-regions occupied by 
the same material. It uniquely determines the partition  

 of a repetitive cell  onto a finite 
sequence of materially homogeneous sub-intervals ℒk, 
k = 1, ..., κ. They will be referred to as the maximal ma-
terially homogeneous subintervals of ℒ. The assumed 
form of the surface network distribution Γ we treat as 
the simplest form that allows the use of beam constraints 
as a modeling approach results beam equations satisfied 
with an acceptable engineering accuracy.

The displacement vector field will be represented 
by , . 
At the same time stress and strain components we are 
to represent by vectors , 

, respectively, interrelated 
by the attached constitutive relations.  written 
under the material matrix

 (3)

Finally q stands for the total loading in the z-axis 
direction.
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OUTlINe Of The mODelINg pROCeDURe  
Of sleNDeR beams

Following Jędrysiak (2020), the virtual work principle 
will be assumed in the form 

 (4)

which should be hold for any  
and:

−	 the kinematic beam-type of the displacement con-
straints

4
 (5)

where  
−	 the virtual displacement space introduced in the 

form 

 (6)

for unilateral stress components

 (7)

externally normal to boundaries of materially ho-
mogeneous components of Ω (defined in the set 
r  of regular points in ) and 
jumps of these components σn on Γreg ∩ Γ denoted by

. 
In the notation (4) the symbols of iterated integrals 

are not commutative and are treated as operators act-
ing on functions represented by symbols placed di-
rectly on the right side of each integral. 

We are to treat the virtual work principle (4)  
as a starting point of the modeling procedure. Note 
that the coefficients of the stiffness matrix depend 
here only on the Young modulus (E) and the Poisson 
ratio (ν), i.e.:

  (8)

In the case of homogeneous materials the virtual 
work principle (4) has been used as a fundamental 
formulation of the laws of mechanics being a start-
ing point for procedures which via various restric-
tions imposed onto a displacement virtual space (6) 
leads to formulations of various beam theories. The 
micro-macro tolerance approximation has been used 
as a tool to enable the application of proportionality 
the displacement longitudinal component and the de-
flection gradient in the modeling of inhomogeneous 
beams (Woźniak & Wierzbicki, 2000). 

Similarly, as in Jędrysiak (2020), we shall 
introduce: 
−	 the strain–displacement relation

e = ∂w  (9)

where  is interpreted as beam strain field;
−	 the stress–strain relation 

  (10)

In Eq. (10) s0 ≡ sxx and E = E(x) and B = B(x) areare 
interpreted as Λ – periodic functions being elasticity and 
visco-elasticity modulus, respectively. Consequently, 
one can arrive at the governing equations of slender 
beam in the form 

 (11)

together with constitutive equation

  (12)

Substituting Eq. (11) into Eq. (12) governing equa-
tions of their periodic beams can be written as

 (13)
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In Eqs. (11), (12) and (13) stiffness of the beam: 
bending d = d(x) and visco-elastic and visco-elastic visco-elastic b = b(x) as well as as well asas well as 
mass density μ = μ(x) and the rotational mass inertia and the rotational mass inertiaand the rotational mass inertia 
j = j(x), defined as defined asdefined as 

 (14)

being periodic functions as well as axis force g given 
by

 (15)

have also been used.
Note that the role of virtual displacement space V 

for virtual work balance (4) takes over for (13) an an-takes over for (13) an an-
other space W of virtual deflections . How-How-
ever, focusing on the realization of the aim of the pa-
per, the second stage of modeling will be carried out 
in the next section, similarly as in Jędrysiak (2020), 
using the orthogonalization method originally taken 
into account by a creator of the tolerance modeling 
– Czesław Woźniak (Woźniak & Wierzbicki, 2000).

sURfaCe lOCalIZeD DeCOmpOsITION  
Of The DefleCTION fIelD

In the framework of surface localization approach to 
the tolerance modeling (Kula & Wierzbicki, 2019), 
it is assumed that a basic physical field w (beam 
displacement field or here: beam deflection field) is 
decomposed onto a sum of continuously differentiable 
fields referred to as long-wave part (L-part) and short- 
-wave part (S-part), respectively:

w ≡ wL + wS   (16)

in which the long-wave term wL and the short-wave 
term wS, are restricted by condition   

(or equivalently ). Under the definition for-
mulated in the previous sequence terms wL and wS are 
not given uniquely. Indeed, if  and   
then  for  is also (L, S)-decom-
position. 

In order to define (L, S)-decomposition and Fou-
rier representation of displacement field usually used 
in the surface localization approach we are to intro-
duce successively:
−	 The composite piece-wise averaging ( )f f x=   

  
( )f f x=     of : [0, ]f L R→  such that if k  is 

a unique maximal materially homogeneous subin-
terval of   and sk ksl≡ +  , k = 1, 2, ..., κ, 
s = 1, 2, ... Then 

 
(17)

together with the piecewise constant network of macro-
points f skx ∈   such that ( ) ( )ff x f x=     
for any skx∈ . The unique macropoint placed in 

sk ksl≡ +   will be denoted by skl , k = 1, ..., κ, 
s = 1, 2, ... It is mean that sk fl x=   if skx∈
and sk skl ∈ . Note that if , [0, ]x x L∈  are placed 
in the same maximal materially homogeneous 
subinterval sk  of  , k = 1, ..., κ, s = 1, 2, ..., then 

( ) ( )k kf x f x=
   

. 
−	  – mean value ( )f x〈 〉  of :f R R→  in defined 

by

 
(18)

for ~1 ... [0, ]x lκ∈ ∪ ∪ = ≡    any [0, ]x L∈  
for which ( ) [0, ]x L⊂ . 
−	 The trace [0, ]LΓ

 of the collection of surfaces Γ ∩ Ω 
separating regions occupied by composite compo-
nents defined by [0, ] {0,0} {0,0}LΓ × × = Γ∩ ⊂ ΩL  [0, ] {0,0} {0,0}LΓ × × = Γ∩ ⊂ ΩL
(in the case, investigated in the present paper, in 
which Γ ⊂ Ω  is perpendicular to the beam axis 



architectura.actapol.net 23

Kula, D. (2021). The use of the surface location approach in the modeling of periodically nonhomogeneous slender visco-elastic 
beams. Acta Sci. Pol. A�c�it�ct��a�� ��A�c�it�ct��a�� �� (3), 19–25. doi: 10.22630/ASPA.2021.20.3.22

, [0, ]LΓ  is orthogonal projection trace of Γ ⊂ Ω   
onto ).

−	 ε – ribbon [0, ]( )Lεγ Γ  of defined by 

 (19)

where on ε – (L, S)-decomposition w = wL,ε + wS,ε of 
the deflection field w determined by a pair (wL,ε, wS,ε) 
wS,ε = w – wL,ε, and by quadratic ε – regularization wL,ε 
of w

 
(20)

where [0, ]{ , }Ldist xξΓ ≡ Γ  and 0εξ ε ξΓ≡ − > . 
−	 Limit (L, S)-decomposition w = wL + wS of u deter-

mined by a pair (wL, wS) introduced by limit pass-
sage 0 , ,( , ) lim ( , )L S L Sw w w wε ε ε≡



.
−	 Collection of orthogonal (in 2 ( )kL  ) and l – periodic 

Fourier basis 2( ) ( )r r
k k kg g C= ⋅ ∈  , r = 0, 1, 2, ... , 

which for any k = 1, ..., κ consists of the infinite 
sequence (indexed by r = 0, 1, 2, ...) of Fourier 
fluctuations defined in R and which for r > 0 is 
formed by ℒ-oscillating functions, i.e. l – periodic 
functions such that 0rg〈 〉 =  and 1rg ≡  for r = 0 
with respect to which beam deflection w = w(x) 
is possible to be represented in any [0, ]sk L⊂ , 
k = 1, ..., κ, by Fourier expansions 

  (21)

(summation convention with respect to r = 1, 2, ... 
holds) with coefficients (Fourier amplitudes) 

 (22)

Remark. In expansion (21) Fourier coeffi-
cients (22) are constant in every sk  but strongly de-
pend on integers s and k. At the same time in expan-

sion (21) Fourier fluctuations gr
k = gr

k(·) do not depend 
on integer parameter s and obviously depend on the 
enumerator r of Fourier terms.

The Use Of sURfaCe lOCalIZeD  
veRsUs Of TOleRaNCe mODelINg  
fOR sleNDeR peRIODIC beams

If we deal with two phased (κ = 2) l – periodic slender 
beam, related to the equation of motion (13), l – peri-
odic Fourier basis is considered in the form familiar 
with that used in Kula and Wodzyński (2020). It can 
be written in the form

 
(23)

where λη
II ≡ diam(ℒ2), ηI + ηII = 1, and microstruc-

tural parameter λ is taken as equal to the periodic-
ity parameter l, λ = l. In other cases, for example. If 
λ = 2l, it is necessary to apply the realization of the 
procedure for extending the representation of the de-
flection field to the Fourier expansion valid along the 
whole beam length another than that presented in this 
section of the paper. Parameters α1 = 1 / (ηI + 2ηII), 
α2 = 1 / (2ηI + ηII) are uniquely chosen in such a way are uniquely chosen in such a waychosen in such a way 
that oscillating conditions 0r r

L Rg g〈 〉 = 〈 〉 =  are satis-are satis-
fied. Such shape functions have already been used in 
many works (Wodzyński, Kula & Wierzbicki, 2018��Wodzyński, Kula & Wierzbicki, 2018�� 
Kula, 2019�� Kula & Wierzbicki, 2019�� Wodzyński, 
2020). In Kula and Wodzyński (2020), ( )r

Lg x ,  
( )r

Lg x  and ( )r
ODDg x , are referred to as left even, right 

even and odd Fourier fluctuations, respectively. Even 
Fourier fluctuations are properly constructed and  
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appropriately adapted Fourier bases used in Eqs. (21) 
and (22), and odd Fourier fluctuations complement 
them to complete l – periodic Fourier basis given by 
Eq. (23) for the deflection field w. 

Now we are to reformulate governing equations 
(11) to the form adopted to new form of by the virtual 
slender beam deflection 

  
 
 
 

(24)

Following Jędrysiak (2020), we shall to consider 
and solve the problem written asthe problem written as

 (25)

in the framework of which we are obliged to formulate 
the system of equations for Fourier coefficients (Fou-
rier amplitudes) A0, Or, Lr, Rr in the new deflection 
representations 

 (26)

which are proposed in this paper. It is also worth men-
tioning that Fourier amplitudes used in the above rep-
resentation are constant in sufficiently small homoge-
neous sub-regions [0, ]sk L⊂  of the region occupied 
by the periodic composite which is investigated as  
a periodic beam. Hence they can be treated as locally 
slowly varying, (Ostrowski, 2020). The investigation 
of Fourier amplitudes A0, Or, Lr, comes down to apply-
ing the formal orthogonalization procedure

  
 
 
 

(27)

for any integer r and deflection represented by Eq. (26). 
Similar form of the orthogonalization procedure are 
taken into account in Jędrysiak (2020). Just mentioned 
orthogonalization procedure results model equations 
of the investigated periodic beam 

(28)

where { , , }A r r r
ODD L Rg g g g∈  for A = r and 

{ , , }B r r r
ODD L Rg g g g∈  for B = r. Summation deals 

indicators r as well as the three types of elements of 
Fourier basis { , , }A r r r

ODD L Rg g g g∈ .It should be em-
phasize once again that, as in the whole volume of the 
paper, the indicator r  runs over positive integers and 
after the restriction of the summation range in Eq. (28), 
to r = 1, ..., N reduces expansion (24) to a partial Fou-
rier sum. This situation can be interpreted formally as a 
result of the application of original tolerance modeling 
procedure with N  tolerance shape functions. 

fINal RemaRKs

Equation (28) are treated as the essential result of the 
presented paper. A detailed analysis of the equations 
and the announced pearl dispersion analysis of the 
considered beams is the subject of further research. 
Since Eq. (28) are the alternative equivalent for equa-
tions obtained in Jędrysiak (2020) and therefore they 
have been in a form which makes it easier to see 
components which disappear when used instead of the 
tolerance shape functions of the corresponding com-
ponents constructed in this paper Fourier series for 
beam deflection. It should be emphasized that the ap-
plication of Eq. (28) to solve and investigate specific 
problems is much more difficult because instead of a 
finite system of equations for the fluctuation ampli-
tudes obtained as a result of tolerance modeling, we 
are dealing here with an infinite set of equations for 
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WyKORZysTaNIe meTODy lOKalIZaCjI pOWIeRZChNIOWej W mODelOWaNIU 
CIeNKICh beleK lepKOspRężysTyCh

sTResZCZeNIe

Celem pracy jest opracowanie analitycznego przeformułowania znanej teorii cienkich periodycznie niejedno-
rodnych belek lepkosprężystych, które powinno stanowić podstawę do przeprowadzenia planowanych badań 
pełnej relacji dyspersji dla tego typu belek. Metodologia zastosowana w pracy jest podobna do zapropono-
wanej w artykule Tolerance Modelling of Vibrations and Stability for Periodic Slender Visco-Elastic Beams 
on a Foundation will Damping. Revisiting Jarosława Jędrysiaka, opublikowanej w czasopiśmie naukowym 
„Materials” w 2020 roku, ale różni się sposobem wykorzystania modelowania tolerancyjnego wymienionych 
belek. Matematycznym narzędziem rozważań jest specjalny wybór mikro-makro rozkładu ugięcia wiązki. 
Polega ona na pewnej regularyzacji pola przemieszczeń (w niewielkim sąsiedztwie powierzchni niecią-
głości) i skutkuje pewnymi przeformułowaniami klasycznej teorii belek. Uzyskane równania modelowe są  
alternatywną propozycją równań modelowych otrzymanych we wspomnianej pracy profesora Jędrysiaka,  
w której przedstawił przybliżone sformułowanie równań takich belek, wykorzystując klasyczne modelowanie 
tolerancyjne. Zaproponowana w prezentowanej pracy regularyzacja pola ugięcia belki pozwala nam na uży-
cie nieskończonego rozwinięcia Fouriera obowiązującego dla ugięcia w dowolnym obszarze zajmowanym 
przez jednorodny periodyczny materiał kompozytowy, który może być modelowany typowym sposobem  
z wykorzystaniem zasady prac wirtualnych dla powszechnie stosowanych więzów belkowych. Pole ugięcia 
belki zapisywane jest w postaci nieskończonego szeregu Fouriera, wykorzystującego periodycznie rozłożone 
obszary jednorodności materiałowej belki. Zastosowana metoda może być postrzegana jako próba wykorzy-
stania nieskończonej liczby funkcji kształtu w modelowaniu tolerancyjnym, ale jednocześnie jako równo-
ważne przeformułowanie równań teorii drgań belek. Otrzymany układ równań jest nieskończonym układem 
równań różniczkowych zwyczajnych dla nieskończenie wielu współczynników Fouriera w wymienionym 
rozwinięciu Fouriera pola ugięcia belki względem bazy opisanej w metodzie powierzchniowej lokalizacji.

słowa kluczowe: belki periodycznie niejednorodne, modelowanie tolerancyjne, szeregi Fouriera

Fourier amplitudes. On the other hand, Eq. (28) are 
not merely an approximation of the exact equations 
of slender beams but represent their equivalent refor-
mulation. 
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