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A NEW 2D-MODEL OF THE HEAT CONDUCTION 
IN MULTILAYERED MEDIUM-THICKNESS PLATES 
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Abstrakt. 2D-models of multilayered plates are usually derived by a discretization appro-
ach across the plate thickness. Every discretized element coincides with a homogeneous 
layer of the medium and basic unknowns are assumed to be temperature and/or displace-
ment  elds on the plate interfaces. If the number of homogeneous layers is large then the 
discretization approach leads to a large number of basic unknowns. In this contribution 
there is proposed a new approach to the 2D-modelling of heat conduction which results in 
2D-model equations for only two basic unknowns, independently of the number of layers.
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OBJECT OF ANALYSIS

The object of analysis is a plate which occupies region ,Ω ≡ Π×Δ   where  is a regu-

lar region on Ox1x2 plane, ,
2 2
δ δΔ ≡ − , where  is the plate thickness. It is assumed that 

the plate thickness is small where compared to a minimum characteristic length dimen-
sion of the plane region ; that is why the plate will be treated as a medium-thickness 
plate. Let interval  be divided into N subintervals ( )1, 1, 2, ...., ,n nz z n N− =  where:

0 ,
2 2Nz zδ δ= − = . Regions ( )1, , 1, 2, ...,n n nz z n N−Ω ≡ Π× =  are assumed to be made 

of homogeneous and isotropic rigid heat conductors. It means that to every sublayer 
( )1, , 1, 2, ...,n n nz z n N−Ω ≡ Π× =  there is assigned constant heat conduction factor  kn 
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and constant speci  c heat cn, n = 1, 2, ..., N. The thickness of the n-th sublayer will be 

denoted by n, n = 1, 2, ..., N; hence  1 + 2 + ... + n =  and we shall denote n
n
δϕ
δ

≡ ,

1 + 2 + ... + N = 1. A fragment of cross section  x2 = const is shown in Figure 1. 
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Fig. 1. A fragment of a cross section of the plate for x2 = const

Setting  { }
1

1

N

n
n

z
−

=
Ι =   we obtain   × I  as a set of interfaces between homogeneous lay-

ers of the heat conductor. In the general case we shall assume that every pair of adjacent 
layers is made of different materials.

Functions ( ) ( ),k c⋅ ⋅ , de  ned on  – I which attain constant values kn, cn, in every   
(zn–1, zn) are assumed to determine uniquely all thermal properties of the plate under con-
sideration.

The heat conduction in the plate under consideration will be described within the 
framework of the well known Fourier heat conduction theory. To this end denote by
( ) ( ) [ )1 2

0 *, , , , , , ,z t x x z t t tΘ ≡ ∈Π ∈Δ ∈x x , a continuous temperature  eld in

[ ),ot t ∗Π×Δ× , t is a time coordinate.

De  ne:

( ) ( ) ( ) [ )1 2
1 2 0, 1, 2; , ; , , , , , ,x x z t t t

z txα α α
⋅

∗
∂ ∂ ∂∂ ≡ = ∇ ≡ ∂ ∂ ∂ ≡ ≡ ≡ ∈Π ∈Δ ∈

∂ ∂∂
x

( ) ( ),f z f z− +∂ ∂  stand for left hand side and right hand side of the derivative of piece 
wise differentiable function respectively.

·
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Let us denote by  ( ) ( ) [ )1 2
0, , , , ,f f t x x t t t∗= ≡ ∈Π ∈x x  the given a priori heat 

sources, representing the heat transported to the plate across the upper plate and lower 
plate boundary.

The heat balance equation inside the region occupied by plate is:

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,k z z t k z z t c z z t f t∇⋅∇Θ + ∂ ∂Θ − Θ =x x x x

( ) ( ) [ )0 *, , ,z t t t∈Π× Δ − Ι ∈x                                                                                 (1)

and has to be satis  ed together with the heat  ux continuity conditions across interfaces:

( ) ( ) ( ) ( ), , , ,n n n nk z z t k z z t
++ − −∂ Θ = ∂ Θx x                                                               (2)

( ) ,n n nk z k z+ ≡ ∈Π ∈Ιx

( ) [ )1 0 ,n nk z k t t t−
− ∗≡ ∈

As well as the conditions on the upper and lower boundaries plate z = ±  / 2.
In every initial-boundary value problem equations (1), (2) have to be considered toge-

ther with the appropriate boundary and initial conditions. 

AIM OF CONTRIBUTION

The aim of contribution is to propose a certain new 2D- model of the heat conduc-
tion in the multilayered plate under consideration. To be more exact we represent the 

temperature  eld ( ) ( ) [ )1 2
0 *, , , , , , ,

2 2
z t x x z t t tδ δΘ = ∈Π ∈ − ∈x x   in the form:

( ) ( ) ( ) ( ), ,z t t z z tϑ γ ψΘ = + +x x, x, ,  where  ( ) ( ),ϑ ψ⋅ ⋅   are new unknowns and 

( ) ( )0Cγ ⋅ ∈ Δ  is postulated a priori function which will be speci  ed bellow and is called 
the oscylating shape function.

At the same time we are to derive a system of partial differential equations with con-
stant coef  cients for aforementioned new unknowns under consideration. This system 
will be referred to as a 2D-model of the heat conduction in the plate under considera-
tion. Obviously, a solution to a certain correctly stated initial-boundary value problem for 
( ) ( ),ϑ ψ⋅ ⋅  has to uniquely determine the temperature  eld, which should represent a 

suf  ciently good approximation of the corresponding  initial-boundary value problem for 
equations (1), (2).

The main dif  culty of the above modelling procedure is that the functions ( ) ( ),k c⋅ ⋅     
are discontinuous on interfaces. The problem of modelling of layered plates is not new. 
Among large number of references we shall mention here: Burmister [1945], Dong et 
al. [1962], Buf  er [1971], Sun [1971], Wo niak Cz. [1978], Baczy ski [2002], Baron 
[2002], J drysiak et al. [2006], and many others.
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In most approaches the number of new unknowns and hence the number of 2D-model 
equations depends on the number N of homogenous layers and is equal to N-1. This state-
ment is usually related to the fact that the known  2D-models of multilayered plates are usu-
ally based on the discretization  across the plate thickness into N homogeneous sublayers.

For the approach proposed in this contribution the number of unknowns and the num-
ber of equations in the presented 2D-model is equal to 2 being independent of the number 
N of homogenous sublayers. These unknowns are ( ) ( ),ϑ ψ⋅ ⋅ .

FUNDAMENTAL CONCEPT

The fundamental concept of the proposed approach is that of the oscillating shape 
function ( )γ ⋅ , which was introduced previously but not de  ned. We have stated above 
that this function is continuous and bounded in . We also postulate that:

(i) ( )γ ⋅  is linear in every ( )1, 1, 2, ....,n nz z n N− =   

(ii) function ( )γ ⋅   satis  es boundary condition: ( ) ( )0 ,Nz zγ γ=

(iii) ( )
2

2

0z dz

δ

δ
γ

−

=

(iv) values of function (zn), n = 1, 2, ..., N – 1 are given by the system of linear 
              algebraic equations:

( ) ( )1
1 1 1

1
1, 2, ..., 2 1n n

n n n n n n
n n

k k
k k n Nγ γ γ γ

δ δ
+

+ − +
+

− − − = − = −

MODELLING HYPOTHESES

The proposed modelling approach is based on two hypotheses. 
The  rst of them will be called 2D-modelling hypothesis and states that the tempera-

ture  eld can be approximated by means of the formula:

( ) ( ) ( ) ( ), , , ,z t t z z tϑ γ ψΘ = + +x x  x                                                                  (3)

( ) [ )1 2
0 *, , , , ,

2 2
x x z t t tδ δ= ∈Π ∈ − ∈x

provided that the plate thickness is suf  ciently small when compared to the smallest cha-
racteristic length dimension of the plane region .

The above restriction represents the necessary condition but is not suf  cient. 
The most important fact is that under decomposition (3) the heat  ux continuity con-

dition (2) is satis  ed identically.
If we assume that on the lower and upper boundary plane the distribution of the tem-

peratures for every ( ) [ )1 2
0 *, ,x x t t t= ∈Π ∈x  are equal:
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( ) ( ) ( ), , , if
2 2

t t t zδ δϑ ψ+Θ = + =x x x

( ) ( ) ( ), , , if
2 2

t t t zδ δϑ ψ−Θ = − = −x x x

Then the unknowns ( )ϑ ⋅  and ( )ψ ⋅  are interpreted by the formulas:

( ) ( ) ( )( )1, , ,
2

t t tϑ + −= Θ +Θx x x

( ) ( ) ( )( )1, , ,t t tψ
δ

+ −= Θ −Θx x x

Before the formulation of the second hypothesis we de  ne the concept of the residual 
 eld de  ned on  [ )0and ,t t t ∗Π×Δ ∈  and by means of:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,r z t k z z t k z z t c z z t f t= ∇ ⋅∇Θ −∂ ∂Θ − Θ −x x x x x         (4)

where in the right hand side of this formula the temperature  eld has to be substituted by 
equation (3).

The second 2D-modelling hypothesis is based on the well known de  nition of avera-
ging which states that for every integrable function F(z) we de  ne:

( )
2

2

1F F z dz

δ

δδ
−

< >≡

Under the above denotation the second 2D-modelling hypothesis states that:

( )
0

0
r
r z γ

< >=
< + >=                                                                                                         (5)

This is a speci  c case of the orthogonalization procedure.

MODEL EQUATIONS

Realizing both hypothesis stated previously we obtain the following system of two 
partial differential equations with constant coef  cients for unknowns ( ) ( ),ϑ ψ⋅ ⋅ :

 
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

2

2

, ,

, , , 0

, ,

, , , 0

k z t k z z z t

c z t c z z z t f t

k z z z t k z z z t

c z z z t c z z z t f t z z

ϑ γ ψ

ϑ γ ψ

γ ϑ γ ψ

γ ϑ γ ψ γ

∇ ⋅∇ + + ∇ ⋅∇ −

− − + − =

+ ∇ ⋅∇ + + ∇ ⋅∇ −

− + − + − + =

x x

x x x

x x

x x x

   
 (6)
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Equations (6) represent the proposed 2D-model of the plate under consideration. It 
can be observed that for a homogeneous plate we have N = 1 and function ( )γ ⋅  is identi-
cally equal to zero. 

Now let us introduce the extra assumption that the plate midplane is a material sym-
metry plane. It means that functions ( )k ⋅  and ( )c ⋅  are even. From the aforementioned 
extra assumption and taking into account the de  nition of function ( )γ ⋅  formulated in 
previous Section it follows that the function ( )γ ⋅  is the odd function. The proof of this 
statement is rather simple. Equations (6) in this case reduce to the form:

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )2 2

, , , 0

, , 0

k z t c z t f t

k z z z t c z z z t

ϑ ϑ

γ ψ γ ψ

∇ ⋅∇ − − =

+ ∇ ⋅∇ − + =

x x x

x x
                           (7)

Equations (7) are coupled only by means of the boundary and initial conditions for 
functions ( )ϑ ⋅  and ( )ψ ⋅ . This coupling is strictly related to the boundary conditions for 
temperature ( ) ( ) [ )0, , , /2, /2 , ,z t z t t tδ δ ∗Θ ∈ − ∈x  and initial conditions for temperature   

( ) ( ) 0, , , , /2, /2 , .z t z t tΘ ∈Π ∈ − =x x  

CONCLUSIONS AND REMARKS

Special example of 2-D model Equations will be restricted to N = 3. The oscillating 
shape function ( )γ ⋅  for N = 3 is determined by the layer thicknesses 1, 2 and 3 = 1, by 
the heat conduction coef  cients k1, k2 and k3 = k1. The scheme of the plate cross section 
and the diagram of oscillating shape function for k1 > k2 are shown in Figure 2.

Fig. 2. The scheme of the plate cross section for x2 = const and the diagram of oscillating shape 
function for k1 > k2
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The corresponding model equations (7) are:

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )2 2

, , , 0

, , 0

k z t c z t f t

k z z z t c z z z t

ϑ ϑ

γ ψ γ ψ

∇ ⋅∇ − − =

+ ∇ ⋅∇ − + =

x x x

x x
                          (8)

We recall that the plate thickness  = 2 1 + 2 has to be suf  ciently small with the smal-
lest characteristic length dimension of the plate midplane . This requirement is necessary 
but not suf  cient in applying the proposed 2D-model; this is a situation which is typical for 
any 2D-plate model which should appropriate the exact 3-D description of the thin plate.

The main advantage of the proposed 2-D model of the layered plate is evident if the 
number of homogeneous layers is large i.e. we deal with multilayered plates. We recall 
that the proposed model is represented by the system of only 2 partial differential equ-
ations for two unknown functions ( ) ( ),ϑ ψ⋅ ⋅  independently to the number of layers. 

In most approaches the number of new unknowns and hence the  number of 2D-mo-
del equations depends on the number N of homogenous layers. This statement is usually 
related to the fact that the known 2D-models of multilayered plates are usually based on 
the discrietization  across the plate thickness into N homogeneous sublayers.

 At the end of this contribution let us take into account nontrivial situation in which the 
heat  ux is directed exclusively along Oz-axis. In this case we obtain system of ordinary 
differential equations for ( ) ( ),ϑ ψ⋅ ⋅  in the form:

( ) ( ) ( )

( ) ( )( ) ( )2

0

0

c z t f t

c z z z t

ϑ

γ ψ

− =

+ =
                                                                                    (9)

From the formula of this system of equations it follows that if f(t) = 0 then ( ) ( ),ϑ ψ⋅ ⋅  
are constants.
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2D-MODEL PRZEWODNICTWA CIEP A W WIELOWARSTWOWYCH 
P YTACH REDNIEJ GRUBO CI 

Streszczenie. 2D-modele dla wielowarstwowych p yt s  przewa nie uzyskiwane przez 
dyskretyzacj  wzd u  grubo ci p yty. Ka dy dyskretyzowany element jest jednorodn  
warstw , z której sk ada si  p yta. Podstawowymi niewiadomymi s  powsta e w wyniku 
procesu dyskretyzacji: pole temperatury i/lub pole przemieszczenia na powierzchniach roz-
graniczaj cych poszczególne warstwy. Je li liczba jednorodnych warstw jest du a, wtedy 
podej cie dyskretyzacyjne prowadzi do du ej liczby podstawowych niewiadomych. W pre-
zentowanej pracy zosta o zaproponowane nowe podej cie do modelowania przewodnictwa 
ciep a, w którego wyniku otrzymujemy nowy 2D-model z dwiema niewiadomymi, nieza-
le nie od liczby jednorodnych warstw, z których zbudowana jest p yta.  

S owa kluczowe: wielowarstwowa p yta, przewodnictwo ciep a, 2D-modelowanie 
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