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ON THE THERMAL BOUNDARY EFFECT BEHAVIOR 
IN THE HEXAGONAL-TYPE BIPERIODIC ISOTROPIC 
DIVIDING WALLS

Marta Mazewska
Warsaw University of Life Sciences – SGGW 

Abstract. This paper shows the analysis of the temperature boundary effect behavior in 
the dividing wall made of the conductor with bi-periodic material structure in which every 
surface parallel to the outside and the inside surface is bi-periodic. Conductor is made of 
a special case of hexagonal-type material structure. As a tool of modeling there has been 
chosen the tolerance averaging technique. 
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INTRODUCTION. CASE DEFINITION

This paper deals situations in which there is necessity to protect the interior of some 
space from highly oscillating external temperatures. It shows some attempt of using the 
tolerance averaging technique [Wo niak and Wierzbicki 2000, Wo niak (ed.) 2009, 2010, 
J drysiak 2010] to consider heat conduction in wall consist of biperiodic hexagonal-type 
material structure (Fig. 1.) that would have properties described below. Issues of mode-
ling of hexagonal structures has been already raised in [Wo niak and Wierzbicki 2000, 
Nagórko and W growska 2002, Cielecka and J drysiak 2006].

The aim of this paper is to analyze some special kind of behavior observed in consi-
dered structures that is called boundary effect behavior. This phenomena consist on sup-
pressing the  uctuation amplitudes in very thin selvedge layer of considered conductor. 
The boundary effect is described by boundary effect equation.

First, let’s introduce the mentioned hexagonal type structure. In the analyzed case ev-
ery cell is divided into three material rhombus parts , ,  with constant thermal 
properties which in that case are isotropic. Single hexagon will be named as basic cell and 
denoted by .  is a side length of such cell and it is equal to 1. 
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 is illustrated into Figure 2. Let’s also pay attention to the three vectors t1 = [1, 0, 0]T,
2 3[ 0.5,  3/2, 0] ,  [ 0.5,  3/2, 0]T Tt t  on Figure 2. These three vectors coincide 

with shorter diagonals of three rhombus and their introduction is necessary to analyze 
problems of heat conduction in next paragraphs.  

The hexagonal cell is situated in Carthesian orthogonal coordinate system Ox1x2x3 in 
which the plane Ox1x2 is a biperiodicity  plane, axis Ox1 includes the shorter diagonal of 
a distinguish rhombus with the  rst number and Ox3 = Oz is normal to mentioned bipe-
riodicity plane.

The considerations of this paper are limited to special case in which thermal proper-
ties of each rhombus are described by heat conductivity tensor: 

 (1)

Fig. 1.  The conductor with hexagonal-type material structure
Rys. 1.  Przewodnik o strukturze heksagonalnej

Fig. 2.  Basic hexagonal cell
Rys. 2.  Podstawowa komórka heksagonalna
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and by speci  c heat c(·). It has to be emphasize that in considered case the heat conductiv-
ity tensor K(·) is proportional to identity matrix and for each of three rhombus we get:

 

(2)

Also matrix Ka = kaI is the 2 x 2 heat conductivity matrix and it is created after remo-
ving the third row and third column from Ka.

For the purpose of further consideration there is assumed jump discontinuous of 
 on interfaces between three rhombus sections which are treated as perfectly 

bonded [Vutz and Angrist 1970, Sideman and Moalem-Maron 1982].

BOUNDARY EFFECT EQUATION

Boundary effect equation is a part of one of the model equations received using the 
tolerance averaging technique, cf. [Wo niak and Wierzbicki 2000, Nagórko 2008, Micha-
lak 2010], from the well-known parabolic heat transfer equation:

 (3)

Symbol b means the heat sources  eld, c is speci  c heat  eld and  is temperature 
 eld. We also denote  for , , , 

, . Assuming that:

tttt  (4)

where  are  uctuation amplitudes and

 

(5)

we get two forms of boundary effect equation:

v v v vv v v vv v v vv v v vH K  (6)

and

3M(x  (7)

Here and in the sequel symbol  stands for integral averaging operation over related 
representative cell, which in this contribution will be identi  ed as 2 . Vector  will be 
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referred to as a  uctuation vector and its two  rst coordinates are the same asin v. The 
third coordinate is equal to 0 so it can be skipped and we can use two-coordinate vector v.
The concept of the  uctuation vector has been already used in the tolerance modeling 
approach, cf. [Kula et al. 2012, Mazewska and Wierzbicki 2012, 2013a, b]. Vector w 
also has two coordinates and is referred to as a generalized amplitude vector. Exponen-
tial coef  cient in (5) is treated as a value of the Lapunov exponent operator on matrix 

, cf. [Lai-Sang 2013]. The coef  cients that appear in both equations (6) and 

(7) in considered case are described by:

2 2 2

2 2 2

K [( ( ( ( ( ( ](1 I

[( ( ( ] (1

H

 

(8)

 are parameters, that will be described in next paragraph. I is 2 x 2 identity matrix. Coef-
 cient M = M(x3) is here a matrix that appears after changing v into w:

2H 2H

4H
M( K K  (9)

All new symbols used in (8) will be presented below. First we need to focus on the 
function g(x). We deal with three of this functions. Those functions are some parts of  

 de  ned by , for  and r = 1, 2, 3. The choice 
of  will be realized as:

 (10)

where rotQ(x) = Q(x – x0)T + x0, x  R2 means rotation over 2 /3 in R2 with an arbitrary 
chosen origin of hexagonal cell as a center of rotation and Q is orthogonal matrix of rota-
tion over 2 /3 in R2:

Q  (11)

Residual parts  tends to zero while . 
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This residuals, together with six parameters 1, 2, 3, d1, d2, d3 should result a re-
quirement that related continuity conditions imposed the tolerance heat  ux vector should 
be satis  ed.

Under introduced functions h1(x), h2(x), h3(x) continuity condition (for the normal 
component of the tolerance heat  ux) takes place if the following two equations are satis-
 ed. First refers to parameters 1, 2, 3:

 (12)

and the second to parameters d1, d2, d3:

 (13)

Fig. 3.  Function gpeaks
Rys. 3.  Funkcja gpeaks
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where:

(1

(1

(1

Solution to equation (12) is not unique and can be written in the form: 

 (14)

in which . As the  goes to 0, the part marked as  satisfy condition  and 
hence it can be ignored in expressions (13) as well as in (8).

ILLUSTRATIVE PROBLEM

Boundary effect problem for considered issue is related to the stationary case of boun-
dary effect equation (7) which in such case takes form:

M  (15)

together with boundary conditions:

 

(16)

We will use solution to the similar simpler problem formulated and investigated in 
Wo niak et al. [2002] which can be rewritten in the form:
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(17)

In above and  which in considered case is equivalent to 

K

Boundary conditions can be also rewritten for temperatures  and u as it is shown in 
above Figure 4. The connection between  constant temperatures outside and inside and 
averaged temperatures uoutside and uinside is called micro-macro hypothesis which is well 
known and frequently  used  in tolerance averaging technique. 

To show some solution of boundary effect equation (15) there have been assumed 
some values of :
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Fig. 4.  Hexagonally periodic dividing wall
Rys. 4.  Przegroda o periodycznej strukturze heksagonalnej
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(18)

There have been calculated proper values of parameters r and dr:

 (19)

Under introduced values of parameters in (19) continuity condition (for the normal 
component of the tolerance heat  ux) is satis  ed. Since we have assumed that averaged 
values of gmouds (x1, x2) over the area of whole representative cell are close to zero, to 
calculate the value of coef  cient (k33) there should be taken only function gpeaks (x1, x2).
For gpeaks(x1, x2) we have  For proposed kI, kII, kIII we get 
 = 14.25. Moreover,  = 0.02 m or 0.1 m and width of wall L = 0.3 m and hence  = 0.07 

or  = 0.33, respectively. 
There have been also assumed values of boundary conditions (16):

 (20)

Both boundary vectors w0 and wL satisfy condition w1 = w2 and hence the graphs for  
w1 and w2 coincide. 

The quotient  is treated as certain measure of the intensity of boundary effect 
behavior. The below graphs illustrate the interrelation between intensity of boundary ef-
fect behavior  and nondimentional microstructure parameter  for three arbitrary 
 xed values of  and mean conductivity parameter  for three arbitrary  xed values of .

FINAL REMARKS

The interpretation of solution showed on Figure 5 is related with results presented 
on Figure 6 and Figure 7. The intensity of boundary effect grows with increase of mean 
conductivity parameter  and decrease of nondimensional microstructure parameter . 
Boundary effect is stronger for smaller cell and larger width of wall. 
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Three lines presented on Figure 5 shows that:
1. The most important for boundary effect intensity is small dimension of cell  and 

small value of quotient /L.
2. It is better to reduce the dimension of cell than to increase the value of  which can 

be received by improvement of thermal properties of wall in the third direction (parallel 
to axis Oz). Examples on Figure 5 shows that stronger boundary effect appears for three 
times smaller cell than for three times higher value  (compare dashed and dot-dashed 
lines).

3. The wall should have weaker thermal properties in the surface of biperiodicity and 
better in the third direction (parallel to axis Oz).

4. For suf  ciently large dimension of cell boundary effect intensity is small or even 
completely disappears (compare dashed and continuous lines). 

Fig. 5.  Solution to boundary effect issue
Rys. 5.  Rozwi zanie zagadnienia efektu brzegowego

Fig. 6.  The interrelation between intensity of boundary effect behavior and nondimensional mic-
rostructure parameter

Rys. 6.  Zale no  mi dzy efektem brzegowym a bezwymiarowym parametrem mikrostruktury



26                                                                                                                                            M. Mazewska

Acta Sci. Pol.

This paper considers heat conductivity for some special case of hexagonal-type mate-
rial structure in which the single hexagonal cell consists of three constituents with rhom-
bus cross-section. Constituents have different but isotropic material structure. A new 
shape function proposed in the framework assures that tolerance heat  ux vector has 
continuous crossing normal to the surfaces between constituents of hexagonal cell. The 
most important results received in this paper concern boundary effect problem solution 
for described hexagonal-type dividing wall. 
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ZJAWISKO EFEKTU BRZEGOWEGO W DWUKIERUNKOWO 
PERIODYCZNEJ PRZEGRODZIE O IZOTROPOWEJ STRUKTURZE 
HEKSAGONALNEJ

Streszczenie. W niniejszej pracy przeanalizowano zjawisko temperaturowego efektu brze-
gowego w przegrodzie wykonanej z przewodnika o dwukierunkowo periodycznej struk-
turze materialnej, w której ka da powierzchnia równoleg a do wewn trznej i zewn trznej 
powierzchni jest p aszczyzn  periodyczno ci. Przewodnik wykonany jest ze szczególnego 
rodzaju struktury heksagonalnej. Jako narz dzie bada  wykorzystano technik  tolerancyj-
nego u redniania. 

S owa kluczowe: u rednianie tolerancyjne, przewodnictwo ciep a, przewodniki dwukie-
runkowo periodyczne, efekt brzegowy
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