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INTRODUCTION

The problem of calculating structures resting on 
a subsoil has been known in mechanics for a long 
time. In this respect, there are a large number of com-
putational models and a huge number of works using 
these models. Such building structures as foundation 
beams are very widely used in structural engineering, 
for example as basic elements of roads, bridges and 
building foundations (Yue, 2021). These structures 
occupy a significant place in the overall volume of 
construction and the cost of their construction is high. 
Therefore, the improvement in calculation results is 
reflected in the economics of building materials and 
in turn in the value of a construction (Leontiev et al., 
1982). A huge amount of research has been done in 
this area, but the existing calculation methods are not 
perfect. The hypotheses describing displacements in 

the subsoil are also not fully satisfactory. In many 
cases, obtained results differ significantly from the 
real ones (Vlasov & Leontiev, 1960). If the behavior 
of a beam under load can be described well enough by 
the Timoshenko or Bernoulli-Euler beam theory, the 
mechanical properties of the subsoil and its interaction 
with the beam are very difficult to modeling. (Avrami-
dis & Morfidis, 2005). Two methods are commonly 
used to design and analyze the problems of beams 
resting on elastic or viscoelastic ground – analytical 
and numerical. Numerical methods are time-consum-
ing and their accuracy is related to the integrated algo-
rithm (Miao, Shi, Wang & Zhong, 2017). Analytical 
solutions of various problems can serve as benchmarks 
for testing numerical methods, although the current 
state of mathematics allows for finding exact solu-
tions for a limited number of cases. However, in the 
case of boundary value problem concerning the elastic  
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half-space in analytical-numerical solutions, difficul-
ties arise both at the stage of symbolic calculations and 
numerical integration (Jemioło & Szwed, 2017). 

Typically, structures are made of homogeneous and 
isotropic materials. Their contact with the ground, for 
any combination of external loads, is assumed to be 
continuous – it is assumed that vertical displacements 
of the structure and the ground over the entire contact 
area are the same.

Unlike the Winkler model, the classical Vlasov 
model uses a continuum theory on the basis of the 
variational principle, as a result, it has a reliable the-
oretical basis, and the characteristic constants in the 
model can be expressed in terms of material properties 
(Liu & Ma, 2013). With the characteristic constants k 
and t, the compressive and shear work of the elastic 
foundation is taken into account, respectively.

TWO-PaRamETER mODEl Of THE ElasTIC 
VlasOV sOIl

Two-dimensional models of elastic foundation are di-
vided into two groups:
1)  models resulting from the equations of the theory 

of elasticity after introducing certain simplifica-
tions – they are called structural models,

2)  models created by means of combination of layers 
with different material characteristics – these are 
the so-called multiparameter phenomenological 
models (Jemielita, 1994).
The Vlasov elastic foundation model is a structural 

model. Denoting by q(x) and ws(x, z) a load acting on 
the ground and a vertical displacement of the ground, 
respectively, one can write the equation of the two- 
-parameter Vlasov foundation as (Vlasov & Leontiev, 
1960):
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The deflection wi(x) corresponds to the generalized 
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CalCUlaTION ExamPlE

As an example, consider a beam with a rectangular 
cross-section shown in Figure 1. Assume the following 
geometrical dimensions and stiffness characteristics of 
the beam and soil:

b = 5 m
H = 10 m
νs = 0.25
Es = 50·103 kN·m–2

Eb = 27·106 kN·m–2

b1 = 0.4 m
h1 = 0.5 m
p = 10 kN·m–1

where:
b1 – beam width [m], 
h1 – beam height [m].

For a beam with rectangular cross-section, the sec-

ond area moment is calculated from the formula wzor 

CALCULATION EXAMPLE 
As an example, consider a beam with a rectangular cross-section shown in Figure 1. Assume 
the following geometrical dimensions and stiffness characteristics of the beam and soil: 

b
H
s

Es
Eb
b
h
p

where:
b1 – beam width [m],  
h1 – beam height [m]. 

For a beam with rectangular cross-section, the second area moment is calculated from the 

formula    m4.

The function of displacement disappearance along depth is assumed in a form (2a). 
Figures from 2 to 9 show the diagrams of the deflection of the beam and the surface layer 

of the soil, as well as bending moments and transverse forces depending on the location of the 
additional load G.

Fig. 2. Deflection w(x) of the beam on the Vlasov 
elastic foundation for a = b

Fig. 3. Deflection w(x) of the beam on the Vlasov 
elastic foundation for a = 2b

Fig. 4. Deflection w(x) of the beam on the Vlasov 
elastic foundation for a = 3b

Fig. 5. Beam deflection w2(x) depending on the 
position of the additional load G = 100 kN

Fig. 6. Bending moment M(x) in the beam depending 
on the position of the additional load G = 100 kN 

Fig. 7. Transverse force Q(x) in the beam depending 
on the position of the additional load G = 100 kN 

Fig. 8. Generalized transverse force T(x) of the beam 
depending on the position of the additional load 
G = 100 kN 

Fig. 9. Generalized transverse forces S(x) at 
G = 100 kN 

Figures 2, 3 and 4 show the effect of the distance of the additional load on the deflection 
of the beam for two values of the additional load G: G = 100 kN and G = 200 kN. Larger 

 m4.

The function of displacement disappearance along 
depth is assumed in a form (2a).

Figures from 2 to 9 show the diagrams of the de-
flection of the beam and the surface layer of the soil, 
as well as bending moments and transverse forces de-
pending on the location of the additional load G.

fig. 2.  Deflection w(x) of the beam on the Vlasov elastic 
foundation for a = b

fig. 3.  Deflection w(x) of the beam on the Vlasov elastic 
foundation for a = 2b

Figures 2, 3 and 4 show the effect of the distance 
of the additional load on the deflection of the beam 
for two values of the additional load G: G = 100 kN 
and G = 200 kN. Larger values of G evoke greater 
deflections of the beam and the subsoil surface lay-
er. As the distance a between the additional load and 
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fig. 4.  Deflection w(x) of the beam on the Vlasov elastic 
foundation for a = 3b

x

fig. 5.  Beam deflection w2(x) depending on the position 
of the additional load G = 100 kN

fig. 6.  Bending moment M(x) in the beam depending on 
the position of the additional load G = 100 kN

fig. 7.  Transverse force Q(x) in the beam depending on 
the position of the additional load G = 100 kN

fig. 8.  Generalized transverse force T(x) of the beam 
depending on the position of the additional load 
G = 100 kN

x

fig. 9. Generalized transverse forces S(x) at G = 100 kN
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the beam increases, the influence of this load on the 
beam deflection reduces. At the distance of a = 3b the 
influence of the load G on the beam deflection is neg-
ligible, the beam practically does not “see” this load. 

 Figure 5 shows the beam deflection diagram w2(x) 
depending on the distance a between the beam and the 
point of application of the load G = 100 kN.

Figures 6, 7 and 8 show the diagrams of bending 
moments M(x), transverse forces Q(x) and generalized 
transverse forces T(x) of the beam depending on the 
distance a between the beam and the point of applica-
tion of the load G = 100 kN. If the distance a reduces, 
then the radius of curvature reduces accordingly what 
results in an increase in the influence of the load G on 
the values of the beam bending moments. As the value 
of the load G increases or the distance a decreases, 
the influence of the additional load on the values of 
the beam bending moments increases, correspond-
ingly the symmetry of the bending moment diagram 
disappears (Fig. 6). Since the boundary conditions at 
the ends of the beam are satisfied in an exact way, the 
bending moments at points x = ±b are zero, what cor-
responds to a case of a beam resting freely on an elas-
tic foundation.

Figure 9 shows the generalized transverse force 
diagram S(x) in the subsoil (outside the beam bound-
aries) and the generalized transverse force in the beam 
T(x) for G = 100 kN. At the point of application of the 
additional load G, the value of the generalized trans-
verse force is equal to the value of this load. The gen-
eralized transverse force S(x) in the subsoil quickly 
disappears as the load is being moved away from the 
load application point.

CONClUsIONs

The paper considers the problem of the bending of 
a beam, resting freely on the Vlasov foundation, 
uniformly loaded along its entire length and being 
under the influence of an additional load G, applied at 
a distance a from the end of the beam. The influence 
of the additional load on the deflection and the cross- 
-sectional forces in the beam, depending on its size 
and the distance between the point of application and 
the beam end, have been investigated. A flat model 
of the Vlasov subsoil was adopted, the properties of 

which depend on two integral characteristics k and t, 
characterizing the work of the subsoil under compres-
sion and shear, respectively. The displacement disap-
pearance function ϑ(z), due to the assumed thickness 
of the subsoil layer H, was adopted in the form (2a). 

Graphs of deflection, bending moment and trans-
verse force of the beam were prepared depending on 
the distance and position of an additional load G. In 
the case of a very small distance a, the bending mo-
ments change the sign on the right half of the beam. 
This effect should be taken into account when calcu-
lating the effect of the additional load on already ex-
isting foundations. The closer the additional load is to 
the beam end, the greater its influence on the beam 
deflection and cross-sectional forces.
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bElKa sPRężysTa sPOCzyWająCa Na PODłOżU sPRężysTym WłasOWa  
O WybRaNyCH WaRUNKaCH bRzEgOWyCH

sTREszCzENIE

W pracy przedstawiono zagadnienie zginania belki obciążonej równomiernie na całej długości, swobodnie 
spoczywającej na sprężystym podłożu Własowa z dodatkowym obciążeniem zewnętrznym G podłoża przy-
łożonym w odległości a od końca belki. Podany przykład jest szczególnym przypadkiem belki swobodnie 
spoczywającej na sprężystym podłożu, występującej w praktyce budowlanej w wielu przypadkach. W pracy 
rozpatrzono przybliżone rozwiązanie wpływu dodatkowego obciążenia G na ugięcie oraz siły przekrojowe 
belki swobodnie spoczywającej na sprężystym podłożu gruntowym typu Własowa. Przedstawiono wykresy 
ugięcia belki oraz warstwy powierzchniowej gruntu poza jej granicami, a także wykresy momentów zgina-
jących i sił poprzecznych w belce. Zbadano wpływ odległości a przyłożenia dodatkowego obciążenia G na 
ugięcie oraz siły przekrojowe w belce.

słowa kluczowe: belka sprężysta, podłoże sprężyste Własowa, siły przekrojowe, ugięcie belki, funkcja za-
nikania przemieszczeń


