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ABSTRACT

The paper presents examples of thermal fluctuations imposed on the average physical field, which are 
intensively suppressed by a building partition formed of a periodic two-phase composite. This intense 
attenuation applies not only to exponential attenuation, until recently identified with the so-called com-
posite boundary effect behaviour, but also mute oscillatory damping, which next to exponential damping, 
most often accompanies the boundary effect behaviour. The considerations were made using the parabolic 
equation of thermal conductivity as a starting point leading to the equivalent reformulation, but they can be 
easily transferred, e.g. to the area of linear elasticity and other physical phenomena occurring in compos-
ites. Considerations of this paper can be taken into account in the design of rooms that should effectively 
protect precision electronic devices against the harmful effects of external fluctuations in physical fields.
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INTRODUCTION

The analytical description of the composite boundary effect behaviour due to both displacement and tem-
perature fields is closely related to the presence in the equations of thermoelasticity of components with the 
second spatial derivative and concerns both fields affected by the spatial divergence operator – kinematic 
displacement field (or deformation in linear elasticity) and temperature field. Consequently, the description 
of the boundary effect behaviour is qualitatively similar regardless of the physical field to which it relates. 
Unless the description applies to a pair of physical conjugate fields. Considerations are limited to the com-
posite phenomenon of thermal conductivity described by Fourier conductivity law. The basics of tolerance 
modelling, thanks to which the equations used in this work could be obtained, are developed by Woźniak and 
Wierzbicki (2000). The mathematical theory of the basics of tolerance modelling techniques was developed 
by Ostrowski (2017). Surface localized description of heat conduction is used to debark the thermal model of 
the boundary effect phenomenon from the parabolic thermal conductivity equation (cf. Kula, 2014; Kula & 
Wierzbicki, 2019; Wierzbicki, 2019). The surface localized heat transfer equations (HTEs) can be rewritten 
in the form:

* Text was formatted in one-column page style due to complexity of the article.
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 ( )T T p
pc u k u k a b− ∇ ∇ + ∇ = −ϕ  (1a)

 2 ( ) 2 { } ( [ ])pq T pq pq pq p
c q z k z q z q q aA a A a s a k a L u− ∇ ∇ + ∇ + = λλ λ  (1b)

holds in the materially homogeneous parts of the region Ω occupied by the considered composite for:

 { } , 2pq T p q pq T p q T q p
y yk k s k k= ∇ ∇ = ∇ − ∇ϕ ϕ ϕ ϕ ϕ ϕ  (2)

and for ,pq p q pq p q
c kA c A k≡ ≡ϕ ϕ ϕ ϕ  taken in Eq. (1b) as coefficients at the highest, second-order derivatives. 

Term ( [ ]) p
aL uλ  being the RHS of Eq. (1b) includes all averaged terms including thermal sources. In Eq. (1): u and 

ap denote the average temperature field and Fourier amplitudes, respectively, symbols k, c stand for the effective 
conductivity matrix and specific heat fields, respectively. Moreover, Eq. (1) includes scale parameter equal to the 
characteristic length dimension λ of the repetitive cell divided by the composite characteristic length dimension 
of region occupied by the composite. Here and in the sequel ∇y is the projection of gradient operator ∇ ≡ [∂1, ∂2, 
∂3]T onto periodicity directions and formula ∇y + ∇z ≡ ∇ define projection ∇z of gradient operator onto directions 
perpendicular to directions of periodicity. Summation convention holds in the whole volume of the paper.

THERMAL BOUNDARY EFFECT PHENOMENON

The homogeneous part of the Eq. (1b), i.e.:

 2 ( ) 2 { } 0pq T pq pq pq
c q z k z q surf z q surf pA a A a s a k a− ∇ ∇ + ∇ + =λ λ  (3)

is free from external influences represented by the expression [ ]aL uλ  and is usually considered a model of the 
boundary effect phenomenon. This equation is qualitatively similar to the analogous equation of the boundary 
effect obtained in the tolerance averaging technique (TAT) but differs from it by the number of equations and 
form of coefficients expressed by Fourier basis φp, p = 1, 2, …, taken in Eq. (3) as an infinite number of shape 
function.

In the paper, attention will be focused on the stationary boundary effect phenomenon which, consists of two 
types of damping of fluctuations transferred through the composite – exponential damping and oscillatory damp-
ing strictly connected with the real and imaginary parts of complex roots of algebraic equations characteristic for 
Eq. (3). Hence the simplest properties of the composite boundary effect phenomenon can be investigated for the 
two-dimensional composite medium with one-directional periodicity. In this case, the homogeneous part (3) of 
the surface localized HTEs (1) reduces to the infinite system of ordinary differential equations 

 
2

2
2 { } 0p qpq pq pq

k q

d a da
A s k a

dz dz
− − =λ  (4)

For homogeneous periodicity, in which the period is constant, Eq. (4) has constant coefficients. In the paper 
Eq. (4) is treated as a model of the boundary effect phenomenon. In the case when we have to examine the bound-
ary effect phenomenon for a single Fourier fluctuation φ = φp for a fixed integer p and hence term 2λspqdaq / dz 
vanish. Hence the transport of a single Fourier fluctuation across the region occupied by the composite does not 
meet the oscillatory reaction, i.e. it results spq = 0 for any positive indices p, q. Moreover, in this case the intensity 
of the related exponential damping meets local maximum (cf. Kula, 2019). 
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The aim of this paper is 1° to check if exponential damping meet local maximum in more complicated cases, 
in which the pair of Fourier fluctuations are transferred through the composite, and 2° to investigate pairs of 
Fourier fluctuations which are harmless to devices situated in rooms with walls formed by composite walls, i.e. 
for which damping intensity for oscillatory rotations is sufficiently large. Typical Fourier basis consists of both 
left and right even, as well as odd impulses defined by (cf. Fig. 1)
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Formulas (5) involves two-phased composites with 0y – direction taken as periodicity direction and
ηI = lI / (lI + lII), ηII = lII / (lI + lII), taken as saturations of the first and the second components, respectively. 
Parameter ν takes positive integer values, while α1 = 1 / (ηI + 2 ηII), α2 = 1 / (ηI + 2 ηII) are chosen, so that 

1 2 0f f= =  is taken as the normalized condition. Figure 1 illustrates the impulses defined by Eqs. (5) 
and (13) for ν = 1. Replacements φL(ν, y) = λ–1[fL(ν, y) + αfR(ν, y)], φR(ν, y) = λ–1[fL(ν, y) – αfR(ν, y)] and 
φODD(ν, y) = fODD(ν, y), taken under orthogonality condition 0p qk =ϕ ϕ , p, q = 1, 2, …, valid for p ≠ q 
and 2 ( , ) ( , ) / ( , ) ( , )L L R Rf v y kf v y f v y kf v yα = , produce new orthogonal impulses φL(ν, y) and φR(ν, y) usu-
ally named Fourier amplitudes. Obviously, lexicographic numbering order φp = φL(ν, y) for p = 1 + 3(ν – 1), 
φp = φR(ν, y) for φp = 2 + 3(ν – 1), φp = φODD(ν, y) for p = 3 + 3(ν – 1) should be introduced. 

Fig. 1. Even fL, fR and odd fODD temperature impulses
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TRANSPORT OF A SINGLE ODD FOURIER FLUCTUATION

For isotropic conductor Eq. (4) reduces to the second-order ordinary differential equation

 
2

2 1
12

0H

d a
k c k a

dz
− =λ γ  (6)

for k used as a scalar (not as a matrix) conductivity and 11 ( , ) ( , )k ODD ODDk A f v y v y= =γ ϕ ϕ , 
11 2{ } ( ( , ) / )H ODDc k k k d v y dy= = ϕ , γ = 0.125, c = 0.125(2ν –1)2π2, and for

 II I II I
I I II II

I II

( )
,  H

k k
k k k k

+
= + =

η η
η η

η η
 (7)

obviously in Eq. (6). Algebraic equation 2 2 0Hk r c k− =λ γ , characteristic for differential Eq. (6), has two 
real roots and hence exponential and rotational intensities defined as real and imaginary parts of the character-
istic equation are given by

 1, 2 2

1
,  0H

exp rot

k c
r

k
= = ± =ω ω

γλ
 (8)

It has been analytically proved (Kula, 2019) that for any saturation η = ηI exponential intensit
ωexp = ωexp(η, k) meet local maximum for a certain parameter k ≡ k2 / k1. The lack of the imaginary part ωrot 
of the root r = ωexp + jωrot, j2 = –1, indicates that rotational intensity value is equal to zero, i.e. a single odd 
impulse does not oscillate. The graphs of the exponential intensity ωexp = ωexp(η, k) of a single odd impulse as 
a function of two arguments η and k is illustrated in Figure 2.

Fig. 2. Exponential intensity for a single impulse fODD 
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TRANSPORT OF FOURIER FLUCTUATION PAIRS

Linear combination a1φ1(ν1, y) + a2φ2(ν2, y) of impulses φ1 and φ2 transferred through the composite will be 
investigated. If φ1 and φ2 are Fourier orthogonal amplitudes and assuming the absence of heat sources amplitudes 
a1 and a2 should satisfy the matrix model equations for boundary effect behavior:

 
2

2

2
2 { } 0H

K K K

kd a da
A S A a

dz kdz
− − =λ λ  (9)

For a ≡ [a1, a2]T and matrix coefficients

 1 1

2 2

0 00
,  ,  { }

0 00K K KA S A= = =
−

α γβ

α γβ
 (10)

with 1 1 1 /k k=α ϕ ϕ , 2 2 2 /k k=α ϕ ϕ , 2
1 1( / ) /k d dy k=γ ϕ , 2

2 2( / ) /k d dy k=γ ϕ  as well as 
1 2 2 1( / / ) /k d dy k d dy k= −β ϕ ϕ ϕ ϕ . Under boundary conditions written in the form a(0) = a0 ≡ [a1(0), 

a2(0)]T, a(δ) = aδ ≡ [a1(δ), a2(δ)]T Eq. (9) leads to the solutions obtained by Kula (2016) and numerically analysed 
by Wodzyński (2019)
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Note that in Eq. (11) KΔ  for 2 { }K K K KS A AΔ = −  is defined as a unique positive matrix for which 
2

K KΔ = Δ  
and 1 1

K K K KA A− −Δ = Δ  and 1 1
K K K KA B B A− −=  hold under properties of the matrix AK, BK and CK. We are to 

debark from Eq. (11) 1( )expω ϕ , 2( )expω ϕ , 1( )rotω ϕ  and 2( )rotω ϕ .
Case 1° Pair 1 2( , )ϕ ϕ  consists of left and right even Fourier fluctuations. In this case 1

L=ϕ ϕ , 2
R=ϕ ϕ , β = 0 

and hence Eq. (11) reduces to
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under 1 1 1
1,2 ( ) ( ) ( )exp rotr j= ±ϕ ω ϕ ω ϕ , 2 2 2

1,2 ( ) ( ) ( )exp rotr j= +ϕ ω ϕ ω ϕ  for 1( ) 0rot =ω ϕ , 2( ) 0rot =ω ϕ  and 

 1 21 2

1 2

( ) ,  ( )H H
exp exp

k k

k k
= =

γ γ
ω ϕ ω ϕ

α α
 (13)

are exponential intensity the same for both fluctuations φ1 = φL, φ2 = φR, i.e. γ1 / α1 = γ2 / α2. 
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Case 2° Pair (φ1, φ2) consists of one even and one odd fluctuation. In this case φ1 = φL, φ2 = φODD, d ≠ 0, γ1 / α1 
≠ γ2 / α2 (Kula, 2016; Wodzyński, 2019) and hence Eq. (11) reduces to the system of two second-order ordinary 
differential equations which imply single fourth-order differential equation

 
24 2 2

1 2 1 2
4 2 2 4

1 2 1 2 1 2

1 4 1
0H Hk kd d

k kdz dz
+ − + + =

γ γ γ γχ β χ
χ

α α α α α αλ λ
 (14)

satisfying by both amplitudes a1 and a2, i.e. for χ(z) = a1(λz) and χ(z) = a2(λz). The equation, characteristic for 
Eq. (14), is biquadratic:
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Setting 
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we arrive at the four complex roots of the characteristic for Eq. (15)

 ,  0,  0exp rot exp rotr j= ± ±  > >ω ω ω ω  (17)

in which positive reals ωexp > 0 and ωrot > 0 are interpreted as exponential intensity ωexp = ωexp(φL) = ωexp(φODD) 
and rotational intensity ωrot = ωrot(φL) = ωrot(φODD) of both Fourier fluctuations – left even φL and odd φODD. 
The exponential intensity ωexp depends on the resistance of the conductor and on the rate at which fluctuations 
decline. Rotational intensity ωrot expresses the oscillation rate of Fourier fluctuations. The exponential and rota-
tional intensities can be calculated using the formulas:
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If in Eq. (18) the expression under the external root is non-negative, then Eq. (18) shows the exponential 
intensity for Δ ≥ 0 as well as the rotational intensity, which in this case is equal to zero. However, if the expres-
sion under the root is negative then Eq. (18) expresses two conjugated imaginary numbers – one imaginary part 
is positive, the other negative. The positive imaginary part is the rotational intensity for Δ ≥ 0. It is practically 
impossible to prove the hypothesis by analytical methods. The workable method is the use of numerical meth-
ods, which are similar to fundamental ideas, e.g. to the finite differences method (FDM). The mentioned ideas 
are used in programs preparing various graphs by introducing a points grid, in which the corresponding function 
values are calculated. It should be noted that in the analysed case, it is practically impossible to find extreme 
points of both intensities by analytical methods since the formulas contain operations on the real and imaginary 
parts of complex roots of the biquadratic equation (Figs. 3–6).

Fig. 3. Exponential intensity for the pair of impulses fL, fODD 

Fig. 4. Rotational intensity for the pair of impulses fL, fODD 
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Fig. 5. Exponential intensity for the pair of impulses fL, fODD given in Eq. (12) at η = 0.25 

Fig. 6. Exponential intensity for the pair of impulses fL, fODD given in Eq. (12) at η = 0.5 

The line presented as an exponential intensity in Figure 6 has a small gap in which the one-side limit of the 
intensity is infinite (a similar situation occurs for the curve y x=  at point x = 0).

CONCLUDING REMARKS

Considerations in this paper are restricted to the modelling of the boundary effect phenomenon in the framework 
of thermal conductivity based on the Fourier conductivity law. The above understanding of the boundary effect 
phenomenon was analyzed in several research papers that use methods similar to the tolerance averaging tech-
nique (Szlachetka & Wągrowska, 2011; Witkowska-Dobrev & Wągrowska, 2015; Kula, 2016; Kula, Wierzbicki 
& Witkowska-Dobrev, 2018; Wodzyński, Kula & Wierzbicki, 2018; Kula, 2019). However, original tolerance 
modelling only allows for approximate analysis of physical phenomena occurring in periodic composites. The 
emergence of a variant of tolerance modelling equations in the literature allowing for equivalent reformula-
tion of equations of mechanics for periodic composites, i.e. surface localized equations, has become the strong 
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motivation for undertaking research on the boundary effect phenomenon in composites and it was found that 
boundary fluctuations encounter not only intense exponential damping, but also so-called rotational damping 
when traveling through composite media. The article deals with the analysis of these two types of attenuation. 
Appropriate formulas were derived and used in the paper for these two types of intensity in the selected cases 
of fluctuating boundary loads. The formula for the exponential intensity ωexp in the case of a single fluctuation 
(even as well as odd) is the root of the function of two variables: saturation η with the first component of the 
composite and the quotient k of two component conductivities. It also depends on the scale parameter λ. From 
a formal point of view, here in the boundary localized approach, the dependence on the conductivity quotient 
is a square root of two linear functions ratio (Kula, 2019). Therefore, the partial derivative of the exponential 
intensity in relation to the conductivity quotient is either positive or negative everywhere. It means that locally, 
i.e. in a sufficiently small neighborhood of any η ∈ (0, 1), there is the implicit function k(η) mentioned in the 
hypothesis (Kula, 2019). Thus, it should be recognized that in the case of a single fluctuation there is analytical 
evidence of the hypothesis formulated in the paper.

The existence of critical points of the functions ωexp(η, k) and ωrot(η, k) is proved in the paper. However, 
this result only applies to the fluctuation pairs for which the system of two second-order ordinary differen-
tial equations is reduced to a single fourth-order equation are numerically discussed. In the mentioned case 
ωexp(η, k) and ωrot(η, k) are real and imaginary parts of the complex root of the corresponding biquadratic 
equation. In the mentioned case, realization of analytical procedures seems to be difficult to implement. 
Hence, the hypothesis formulated in the paper can only be verified numerically (cf. Wodzyński, 2019). Such 
numerical verification in the form of graphic illustrations resulting from the use of computer programs was 
partially carried out in the analyzed cases – a pair of even and odd Fourier fluctuations; a pair of even and 
odd modified Fourier fluctuations; and a pair of fluctuations with infinite amplitudes. The latter case is of 
significant importance in mechanics and in particular in civil engineering – it is an indication of the family of 
fluctuations posing a relatively low risk of destruction to precise electronic devices located in rooms whose 
walls are built of composite materials. In this case, the limit value of rotational intensity is zero, and the ex-
ponential damping can be controlled by the saturation values of the composite components. The analysis of 
transfer intensity through the region of a two-phase unidirectional-periodic composite of selected boundary 
fluctuations is the original element of the paper (Wodzyński, 2019). Term homogeneous periodicity used in 
the paper for periodicity determined by a constant period vector suggests that in many cases of periodicity it 
can be interpreted as a homogeneous periodicity by appropriate selection of “heterogeneous cell coverage” of 
the region occupied by the composite media despite the inclusion distribution appearing to be non-periodic. 
However, these situations still require further investigation.
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PRZENOSZENIE FLUKTUACJI TERMICZNYCH PRZEZ PRZEGRODĘ BUDOWLANĄ 

UTWORZONĄ Z PERIODYCZNEGO KOMPOZYTU

STRESZCZENIE 

W pracy przedstawiono przykłady fluktuacji termicznych, które są intensywnie tłumione przez przegrodę 
budowlaną utworzoną z jednokierunkowego periodycznego dwufazowego kompozytu. To intensywne tłu-
mienie dotyczy nie tylko tłumienia wykładniczego, do niedawna utożsamianego z tzw. zjawiskiem efektu 
brzegowego, ale także tłumienia oscylacyjnego, które obok tłumienia wykładniczego najczęściej także towa-
rzyszy zjawisku efektu brzegowego. Rozważania ograniczono do parabolicznego równania przewodnictwa 
cieplnego i jego równoważnego, ale można je łatwo przenieść na przykład do liniowej sprężystości liniowej 
i do opisu innych zjawisk fizycznych występujących w kompozytach. Rozważania mogą znaleźć zastosowa-
nie przy projektowaniu pomieszczeń, które powinny szczególnie skutecznie chronić precyzyjne urządzenia 
elektroniczne przed szkodliwym wpływem wahań zewnętrznych pól fizycznych. 

Słowa kluczowe: skuteczne przewodzenie ciepła, zjawisko efektu brzegowego, przegroda budowlana, śred-
nia temperatura pola 


